論文の概要: LogSHIELD: A Graph-based Real-time Anomaly Detection Framework using Frequency Analysis
- arxiv url: http://arxiv.org/abs/2410.21936v1
- Date: Tue, 29 Oct 2024 10:52:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:41:13.458564
- Title: LogSHIELD: A Graph-based Real-time Anomaly Detection Framework using Frequency Analysis
- Title(参考訳): LogSHIELD:周波数解析を用いたグラフベースリアルタイム異常検出フレームワーク
- Authors: Krishna Chandra Roy, Qian Chen,
- Abstract要約: ホストデータにおけるグラフベースの異常検出モデルであるLogSHIELDを提案する。
平均98%以上のAUCとF1スコアで、ステルスで高度な攻撃を検出できる。
スループットを大幅に向上し、平均検出レイテンシ0.13秒を実現し、検出時間で最先端モデルを上回るパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 3.140349394142226
- License:
- Abstract: Anomaly-based cyber threat detection using deep learning is on a constant growth in popularity for novel cyber-attack detection and forensics. A robust, efficient, and real-time threat detector in a large-scale operational enterprise network requires high accuracy, high fidelity, and a high throughput model to detect malicious activities. Traditional anomaly-based detection models, however, suffer from high computational overhead and low detection accuracy, making them unsuitable for real-time threat detection. In this work, we propose LogSHIELD, a highly effective graph-based anomaly detection model in host data. We present a real-time threat detection approach using frequency-domain analysis of provenance graphs. To demonstrate the significance of graph-based frequency analysis we proposed two approaches. Approach-I uses a Graph Neural Network (GNN) LogGNN and approach-II performs frequency domain analysis on graph node samples for graph embedding. Both approaches use a statistical clustering algorithm for anomaly detection. The proposed models are evaluated using a large host log dataset consisting of 774M benign logs and 375K malware logs. LogSHIELD explores the provenance graph to extract contextual and causal relationships among logs, exposing abnormal activities. It can detect stealthy and sophisticated attacks with over 98% average AUC and F1 scores. It significantly improves throughput, achieves an average detection latency of 0.13 seconds, and outperforms state-of-the-art models in detection time.
- Abstract(参考訳): ディープラーニングを用いた異常なサイバー脅威検出は、新たなサイバー攻撃検出と法医学において、常に人気が高まっている。
大規模運用企業ネットワークにおける堅牢で効率的でリアルタイムな脅威検出には、悪意のあるアクティビティを検出するために、高い精度、高い忠実度、高いスループットモデルが必要である。
しかし、従来の異常検出モデルは高い計算オーバーヘッドと低い検出精度に悩まされており、リアルタイムの脅威検出には適さない。
本研究では,ホストデータにおけるグラフベースの異常検出モデルであるLogSHIELDを提案する。
本稿では,実測値グラフの周波数領域解析を用いたリアルタイム脅威検出手法を提案する。
グラフに基づく周波数分析の意義を示すために,我々は2つの手法を提案した。
Approach-I は Graph Neural Network (GNN) LogGNN を用いており、 approach-II はグラフ埋め込みのためのグラフノードサンプルに対して周波数領域解析を行う。
どちらの手法も、異常検出に統計クラスタリングアルゴリズムを使用している。
提案モデルは,774万の良性ログと375万のマルウェアログからなる大規模ホストログデータセットを用いて評価する。
LogSHIELDは、ログ間の文脈的および因果関係を抽出し、異常なアクティビティを露呈するプロファイランスグラフを探索する。
平均98%以上のAUCとF1スコアで、ステルスで高度な攻撃を検出できる。
スループットを大幅に向上し、平均検出レイテンシ0.13秒を実現し、検出時間で最先端モデルを上回るパフォーマンスを実現している。
関連論文リスト
- Extreme Value Modelling of Feature Residuals for Anomaly Detection in Dynamic Graphs [14.8066991252587]
グラフの時間的シーケンスにおける異常の検出は、トランスポートネットワークにおける事故の検出や、コンピュータネットワークにおけるサイバー攻撃といった分野に適用することができる。
既存の異常グラフ検出方法は、高い偽陽性率や可変サイズのグラフの扱いの難しさ、非自明な時間ダイナミクスなど、複数の制限に悩まされることがある。
そこで本稿では,時間的依存を時系列解析によって時間的依存を明示的にモデル化し,残差を用いて依存を除去する手法を提案する。
論文 参考訳(メタデータ) (2024-10-08T05:00:53Z) - Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series [1.223779595809275]
ニューラルネットワークによるディープラーニングに基づく最先端のアプローチは、異常認識において優れたパフォーマンスを達成する。
本手法はトレーニング効率が向上し,最先端のニューラルネットワークアーキテクチャの精度に優れることを示す。
論文 参考訳(メタデータ) (2024-04-15T15:42:12Z) - Marlin: Knowledge-Driven Analysis of Provenance Graphs for Efficient and Robust Detection of Cyber Attacks [32.77246634664381]
本稿では,リアルタイムのプロファイランスグラフアライメントによるサイバー攻撃検出にアプローチしたMarlinを紹介する。
Marlinは毎秒137Kのイベントを処理でき、120のサブグラフと31の攻撃を正確に識別できる。
論文 参考訳(メタデータ) (2024-03-19T08:37:13Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
MultItask acTIve Graph Anomaly Detection framework,すなわちMITIGATEを提案する。
ノード分類タスクを結合することにより、MITIGATEは既知の異常を伴わずに配布外ノードを検出する能力を得る。
4つのデータセットに関する実証的研究は、MITIGATEが異常検出のための最先端の手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-01-24T03:43:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
我々はAnomaly-Denoized Autoencoders for Graph Anomaly Detection (ADA-GAD)という新しいフレームワークを導入する。
第1段階では,異常レベルを低減したグラフを生成する学習自由な異常化拡張法を設計する。
次の段階では、デコーダは元のグラフで検出するために再訓練される。
論文 参考訳(メタデータ) (2023-12-22T09:02:01Z) - Graph Neural Networks based Log Anomaly Detection and Explanation [19.66344385835598]
イベントログは、ハイテクシステムのステータスを記録するために広く使用されている。
ほとんどの既存のログ異常検出方法は、ログイベントカウント行列またはログイベントシーケンスを入力として取り込む。
我々はLogs2Graphsと呼ばれる教師なしログ異常検出のためのグラフベースの手法を提案する。
論文 参考訳(メタデータ) (2023-07-02T09:38:43Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z) - One-Class Graph Neural Networks for Anomaly Detection in Attributed
Networks [2.591494941326856]
One Class Graph Neural Network (OCGNN) は、グラフ異常検出のための一級分類フレームワークである。
OCGNNは、グラフニューラルネットワークの強力な表現能力と古典的な一流の目的を組み合わせるように設計されている。
論文 参考訳(メタデータ) (2020-02-22T01:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。