Quantum simulation of the microscopic to macroscopic crossover using superconducting quantum impurities
- URL: http://arxiv.org/abs/2410.21941v1
- Date: Tue, 29 Oct 2024 11:01:33 GMT
- Title: Quantum simulation of the microscopic to macroscopic crossover using superconducting quantum impurities
- Authors: Amir Burshtein, Moshe Goldstein,
- Abstract summary: We look at the onset of Fermi's golden rule as a discrete microscopic bath of modes approaches the macroscopic thermodynamic limit.
We show that it is necessary to keep a small but finite escape rate for each single-photon mode to obtain a finite long-time decay rate.
Our formalism could be used to analyze recent experiments in superconducting circuits.
- Score: 0.0
- License:
- Abstract: Despite being a pillar of quantum mechanics, little attention has been paid to the onset of Fermi's golden rule as a discrete microscopic bath of modes approaches the macroscopic thermodynamic limit and forms a continuum. Motivated by recent experiments in circuit quantum electrodynamics, we tackle this question through the lens of single-photon decay in a finite transmission line coupled to a qubit ("quantum impurity"). We consider a single-photon state, coupled via the nonlinear impurity to several baths formed by multi-photon states with different number of photons, which are inherently discrete due to the finite size of the line. We focus on the late-time dynamics of the single-photon, and uncover the conditions under which the photon's decoherence rate approaches the decay rate predicted by Fermi's golden rule. We show that it is necessary to keep a small but finite escape rate (unrelated to the impurity) for each single-photon mode to obtain a finite long-time decay rate. We analyze the contribution of the baths formed by many-body states with different number of photons, and illustrate how the decay rate induced by some bath of $n$ photon states is enhanced by the presence of other baths of $m \neq n$ photon states, highlighting the contribution of cascade photon decay processes. Our formalism could be used to analyze recent experiments in superconducting circuits.
Related papers
- Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Down-conversion of a single photon as a probe of many-body localization [0.0]
In a non-linear medium, even a single photon would decay by down-converting (splitting) into lower frequency photons with the same total energy.
In this case, the photon's fate becomes the long-standing question of many-body localization (MBL)
Our result introduces a new platform to explore fundamentals of MBL without having to control many atoms or qubits.
arXiv Detail & Related papers (2022-03-31T17:11:12Z) - A multipair-free source of entangled photons in the solid state [0.0]
Multiphoton emission commonly reduces the degree of entanglement of photons generated by non-classical light sources.
Quantum emitters have the potential to overcome this hurdle but, so far, the effect of multiphoton emission on the quality of entanglement has never been addressed in detail.
arXiv Detail & Related papers (2022-03-31T14:50:16Z) - Continuous quantum light from a dark atom [2.5015682396550543]
We report on a quantum-nonlinear wave-mixing experiment where resonant lasers and an optical cavity define a closed cycle between several ground and excited states of a single atom.
We show that, for strong atom-cavity coupling and steady-state driving, the entanglement between the atomic states and intracavity photon number suppresses the excited-state population via quantum interference.
The system dynamics then result from transitions within a harmonic ladder of entangled dark states, one for each cavity photon number, and a quantum Zeno blockade that generates antibunching in the photons emitted from the cavity.
arXiv Detail & Related papers (2021-03-01T17:19:29Z) - Artificial coherent states of light by multi-photon interference in a
single-photon stream [0.0]
Coherent optical states consist of a quantum superposition of different photon number (Fock) states.
We create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states.
The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons.
arXiv Detail & Related papers (2020-10-29T10:40:33Z) - Inelastic scattering of a photon by a quantum phase-slip [0.0]
We show that a quantum phase-slip fluctuation in high-impedance superconducting waveguides can split a single microwave photon into a large number of lower-energy photons.
The measured decay rates are explained without adjustable parameters in the framework of a new model of a quantum impurity in a Luttinger liquid.
arXiv Detail & Related papers (2020-10-05T15:35:21Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.