Automated Vulnerability Detection Using Deep Learning Technique
- URL: http://arxiv.org/abs/2410.21968v1
- Date: Tue, 29 Oct 2024 11:51:51 GMT
- Title: Automated Vulnerability Detection Using Deep Learning Technique
- Authors: Guan-Yan Yang, Yi-Heng Ko, Farn Wang, Kuo-Hui Yeh, Haw-Shiang Chang, Hsueh-Yi Chen,
- Abstract summary: The study demonstrates that deep learning techniques, particularly with CodeBERT's advanced contextual understanding, can significantly improve vulnerability detection.
Our approach transforms source code into vector representations and trains a Long Short-Term Memory (LSTM) model to identify vulnerable patterns.
- Score: 1.1710022685486914
- License:
- Abstract: Our work explores the utilization of deep learning, specifically leveraging the CodeBERT model, to enhance code security testing for Python applications by detecting SQL injection vulnerabilities. Unlike traditional security testing methods that may be slow and error-prone, our approach transforms source code into vector representations and trains a Long Short-Term Memory (LSTM) model to identify vulnerable patterns. When compared with existing static application security testing (SAST) tools, our model displays superior performance, achieving higher precision, recall, and F1-score. The study demonstrates that deep learning techniques, particularly with CodeBERT's advanced contextual understanding, can significantly improve vulnerability detection, presenting a scalable methodology applicable to various programming languages and vulnerability types.
Related papers
- Comparison of Static Application Security Testing Tools and Large Language Models for Repo-level Vulnerability Detection [11.13802281700894]
Static Application Security Testing (SAST) is usually utilized to scan source code for security vulnerabilities.
Deep learning (DL)-based methods have demonstrated their potential in software vulnerability detection.
This paper compares 15 diverse SAST tools with 12 popular or state-of-the-art open-source LLMs in detecting software vulnerabilities.
arXiv Detail & Related papers (2024-07-23T07:21:14Z) - Security Vulnerability Detection with Multitask Self-Instructed Fine-Tuning of Large Language Models [8.167614500821223]
We introduce MSIVD, multitask self-instructed fine-tuning for vulnerability detection, inspired by chain-of-thought prompting and LLM self-instruction.
Our experiments demonstrate that MSIVD achieves superior performance, outperforming the highest LLM-based vulnerability detector baseline (LineVul) with a F1 score of 0.92 on the BigVul dataset, and 0.48 on the PreciseBugs dataset.
arXiv Detail & Related papers (2024-06-09T19:18:05Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
We introduce a comprehensive vulnerability benchmark VulBench.
This benchmark aggregates high-quality data from a wide range of CTF challenges and real-world applications.
We find that several LLMs outperform traditional deep learning approaches in vulnerability detection.
arXiv Detail & Related papers (2023-11-21T08:20:39Z) - Vulnerability Detection Using Two-Stage Deep Learning Models [0.0]
Two deep learning models were proposed for vulnerability detection in C/C++ source codes.
The first stage is CNN which detects if the source code contains any vulnerability.
The second stage is CNN-LTSM that classifies this vulnerability into a class of 50 different types of vulnerabilities.
arXiv Detail & Related papers (2023-05-08T22:12:34Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - DCDetector: An IoT terminal vulnerability mining system based on
distributed deep ensemble learning under source code representation [2.561778620560749]
The goal of the research is to intelligently detect vulnerabilities in source codes of high-level languages such as C/C++.
This enables us to propose a code representation of sensitive sentence-related slices of source code, and to detect vulnerabilities by designing a distributed deep ensemble learning model.
Experiments show that this method can reduce the false positive rate of traditional static analysis and improve the performance and accuracy of machine learning.
arXiv Detail & Related papers (2022-11-29T14:19:14Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.