Hyperspectral Imaging-Based Perception in Autonomous Driving Scenarios: Benchmarking Baseline Semantic Segmentation Models
- URL: http://arxiv.org/abs/2410.22101v1
- Date: Tue, 29 Oct 2024 14:54:13 GMT
- Title: Hyperspectral Imaging-Based Perception in Autonomous Driving Scenarios: Benchmarking Baseline Semantic Segmentation Models
- Authors: Imad Ali Shah, Jiarong Li, Martin Glavin, Edward Jones, Enda Ward, Brian Deegan,
- Abstract summary: Hyperspectral Imaging (HSI) is known for its advantages over traditional RGB imaging in remote sensing, agriculture, and medicine.
Several HSI datasets such as HyKo, HSI-Drive, HSI-Road, and Hyperspectral City have been made available.
However, a comprehensive evaluation of semantic segmentation models (SSM) using these datasets is lacking.
This study establishes a baseline SSM benchmark on available annotated datasets for future evaluation of HSI-based ADAS perception.
- Score: 3.6096086024478775
- License:
- Abstract: Hyperspectral Imaging (HSI) is known for its advantages over traditional RGB imaging in remote sensing, agriculture, and medicine. Recently, it has gained attention for enhancing Advanced Driving Assistance Systems (ADAS) perception. Several HSI datasets such as HyKo, HSI-Drive, HSI-Road, and Hyperspectral City have been made available. However, a comprehensive evaluation of semantic segmentation models (SSM) using these datasets is lacking. To address this gap, we evaluated the available annotated HSI datasets on four deep learning-based baseline SSMs: DeepLab v3+, HRNet, PSPNet, and U-Net, along with its two variants: Coordinate Attention (UNet-CA) and Convolutional Block-Attention Module (UNet-CBAM). The original model architectures were adapted to handle the varying spatial and spectral dimensions of the datasets. These baseline SSMs were trained using a class-weighted loss function for individual HSI datasets and evaluated using mean-based metrics such as intersection over union (IoU), recall, precision, F1 score, specificity, and accuracy. Our results indicate that UNet-CBAM, which extracts channel-wise features, outperforms other SSMs and shows potential to leverage spectral information for enhanced semantic segmentation. This study establishes a baseline SSM benchmark on available annotated datasets for future evaluation of HSI-based ADAS perception. However, limitations of current HSI datasets, such as limited dataset size, high class imbalance, and lack of fine-grained annotations, remain significant constraints for developing robust SSMs for ADAS applications.
Related papers
- Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - HS3-Bench: A Benchmark and Strong Baseline for Hyperspectral Semantic Segmentation in Driving Scenarios [3.7498611358320733]
There is no standard benchmark available to measure progress on semantic segmentation in driving scenarios.
In this paper, we provide the HyperSpectral Semantic benchmark (HS3-Bench)
It combines annotated hyperspectral images from three driving scenario datasets and provides standardized metrics, implementations, and evaluation protocols.
arXiv Detail & Related papers (2024-09-17T14:00:49Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - SSPNet: Scale and Spatial Priors Guided Generalizable and Interpretable
Pedestrian Attribute Recognition [23.55622798950833]
A novel Scale and Spatial Priors Guided Network (SSPNet) is proposed for Pedestrian Attribute Recognition (PAR) models.
SSPNet learns to provide reasonable scale prior information for different attribute groups, allowing the model to focus on different levels of feature maps.
A novel IoU based attribute localization metric is proposed for Weakly-supervised Pedestrian Attribute localization (WPAL) based on the improved Grad-CAM for attribute response mask.
arXiv Detail & Related papers (2023-12-11T00:41:40Z) - Hyperspectral Benchmark: Bridging the Gap between HSI Applications
through Comprehensive Dataset and Pretraining [11.935879491267634]
Hyperspectral Imaging (HSI) serves as a non-destructive spatial spectroscopy technique with a multitude of potential applications.
A recurring challenge lies in the limited size of the target datasets, impeding exhaustive architecture search.
This study introduces an innovative benchmark dataset encompassing three markedly distinct HSI applications.
arXiv Detail & Related papers (2023-09-20T08:08:34Z) - Gait Recognition in the Wild: A Large-scale Benchmark and NAS-based
Baseline [95.88825497452716]
Gait benchmarks empower the research community to train and evaluate high-performance gait recognition systems.
GREW is the first large-scale dataset for gait recognition in the wild.
SPOSGait is the first NAS-based gait recognition model.
arXiv Detail & Related papers (2022-05-05T14:57:39Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
We present a framework for semi-adaptive and domain-supervised semantic segmentation.
It is enhanced by self-supervised monocular depth estimation trained only on unlabeled image sequences.
We validate the proposed model on the Cityscapes dataset.
arXiv Detail & Related papers (2021-08-28T01:33:38Z) - Hyperspectral Image Super-Resolution with Spectral Mixup and
Heterogeneous Datasets [99.92564298432387]
This work studies Hyperspectral image (HSI) super-resolution (SR)
HSI SR is characterized by high-dimensional data and a limited amount of training examples.
This exacerbates the undesirable behaviors of neural networks such as memorization and sensitivity to out-of-distribution samples.
arXiv Detail & Related papers (2021-01-19T12:19:53Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - Hyperspectral Classification Based on 3D Asymmetric Inception Network
with Data Fusion Transfer Learning [36.05574127972413]
We first deliver a 3D asymmetric inception network, AINet, to overcome the overfitting problem.
With the emphasis on spectral signatures over spatial contexts of HSI data, AINet can convey and classify the features effectively.
arXiv Detail & Related papers (2020-02-11T06:37:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.