Hyperspectral Remote Sensing Images Salient Object Detection: The First Benchmark Dataset and Baseline
- URL: http://arxiv.org/abs/2504.02416v1
- Date: Thu, 03 Apr 2025 09:12:42 GMT
- Title: Hyperspectral Remote Sensing Images Salient Object Detection: The First Benchmark Dataset and Baseline
- Authors: Peifu Liu, Huiyan Bai, Tingfa Xu, Jihui Wang, Huan Chen, Jianan Li,
- Abstract summary: We introduce the first HRSI-SOD dataset, termed HRSSD, which includes 704 hyperspectral images and 5327 pixel-level annotated salient objects.<n>The HRSSD dataset poses substantial challenges for salient object detection algorithms due to large scale variation, diverse foreground-background relations, and multi-salient objects.<n>We propose an innovative and efficient baseline model for HRSI-SOD, termed the Deep Spectral Saliency Network (DSSN)
- Score: 14.081609886645555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of hyperspectral remote sensing image salient object detection (HRSI-SOD) is to identify objects or regions that exhibit distinct spectrum contrasts with the background. This area holds significant promise for practical applications; however, progress has been limited by a notable scarcity of dedicated datasets and methodologies. To bridge this gap and stimulate further research, we introduce the first HRSI-SOD dataset, termed HRSSD, which includes 704 hyperspectral images and 5327 pixel-level annotated salient objects. The HRSSD dataset poses substantial challenges for salient object detection algorithms due to large scale variation, diverse foreground-background relations, and multi-salient objects. Additionally, we propose an innovative and efficient baseline model for HRSI-SOD, termed the Deep Spectral Saliency Network (DSSN). The core of DSSN is the Cross-level Saliency Assessment Block, which performs pixel-wise attention and evaluates the contributions of multi-scale similarity maps at each spatial location, effectively reducing erroneous responses in cluttered regions and emphasizes salient regions across scales. Additionally, the High-resolution Fusion Module combines bottom-up fusion strategy and learned spatial upsampling to leverage the strengths of multi-scale saliency maps, ensuring accurate localization of small objects. Experiments on the HRSSD dataset robustly validate the superiority of DSSN, underscoring the critical need for specialized datasets and methodologies in this domain. Further evaluations on the HSOD-BIT and HS-SOD datasets demonstrate the generalizability of the proposed method. The dataset and source code are publicly available at https://github.com/laprf/HRSSD.
Related papers
- HSOD-BIT-V2: A New Challenging Benchmarkfor Hyperspectral Salient Object Detection [12.1018751772293]
We introduce HSOD-BIT-V2, the largest and most challenging HSOD benchmark dataset to date.<n>We propose Hyper-HRNet, a high-resolution HSOD network.<n>It effectively extracts, integrates, and preserves effective spectral information while reducing dimensionality by capturing the self-similar spectral features.<n>It conveys fine details and precisely locates object contours by incorporating comprehensive global information and detailed object saliency representations.
arXiv Detail & Related papers (2025-03-18T05:09:42Z) - PGNeXt: High-Resolution Salient Object Detection via Pyramid Grafting Network [24.54269823691119]
We present an advanced study on more challenging high-resolution salient object detection (HRSOD) from both dataset and network framework perspectives.
To compensate for the lack of HRSOD dataset, we thoughtfully collect a large-scale high resolution salient object detection dataset, called UHRSD.
All the images are finely annotated in pixel-level, far exceeding previous low-resolution SOD datasets.
arXiv Detail & Related papers (2024-08-02T09:31:21Z) - FlightScope: An Experimental Comparative Review of Aircraft Detection Algorithms in Satellite Imagery [2.9687381456164004]
This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery.<n>This research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch.<n>YOLOv5 emerges as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores.
arXiv Detail & Related papers (2024-04-03T17:24:27Z) - Learning to Holistically Detect Bridges from Large-Size VHR Remote
Sensing Imagery [40.001753733290464]
It is essential to perform holistic bridge detection in large-size very-high-resolution (VHR) RSIs.
The lack of datasets with large-size VHR RSIs limits the deep learning algorithms' performance on bridge detection.
This paper proposes a large-scale dataset named GLH-Bridge comprising 6,000 VHR RSIs sampled from diverse geographic locations.
arXiv Detail & Related papers (2023-12-05T04:15:22Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
We present S2ADet, an object detector that harnesses the rich spectral and spatial complementary information inherent in hyperspectral images.
S2ADet surpasses existing state-of-the-art methods, achieving robust and reliable results.
arXiv Detail & Related papers (2023-06-14T09:01:50Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - A Parallel Down-Up Fusion Network for Salient Object Detection in
Optical Remote Sensing Images [82.87122287748791]
We propose a novel Parallel Down-up Fusion network (PDF-Net) for salient object detection in optical remote sensing images (RSIs)
It takes full advantage of the in-path low- and high-level features and cross-path multi-resolution features to distinguish diversely scaled salient objects and suppress the cluttered backgrounds.
Experiments on the ORSSD dataset demonstrate that the proposed network is superior to the state-of-the-art approaches both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-10-02T05:27:57Z) - Spatial--spectral FFPNet: Attention-Based Pyramid Network for
Segmentation and Classification of Remote Sensing Images [12.320585790097415]
In this study, we develop an attention-based pyramid network for segmentation and classification of remote sensing datasets.
Experiments conducted on ISPRS Vaihingen and ISPRS Potsdam high-resolution datasets demonstrate the competitive segmentation accuracy achieved by the proposed heavy-weight spatial FFPNet.
arXiv Detail & Related papers (2020-08-20T04:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.