論文の概要: Protecting Privacy in Multimodal Large Language Models with MLLMU-Bench
- arxiv url: http://arxiv.org/abs/2410.22108v1
- Date: Tue, 29 Oct 2024 15:07:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:42:33.921562
- Title: Protecting Privacy in Multimodal Large Language Models with MLLMU-Bench
- Title(参考訳): MLLMU-Benchを用いたマルチモーダル大言語モデルのプライバシ保護
- Authors: Zheyuan Liu, Guangyao Dou, Mengzhao Jia, Zhaoxuan Tan, Qingkai Zeng, Yongle Yuan, Meng Jiang,
- Abstract要約: マルチモーダル・ラージ・モデル・アンラーニングベンチマーク(MLLMU-Bench)は,マルチモーダル・マシン・アンラーニングの理解を深めるための新しいベンチマークである。
MLLMU-Benchは500の架空のプロファイルと153のプロフィールで構成され、各プロファイルは14以上のカスタマイズされた質問応答ペアで構成され、マルチモーダル(画像+テキスト)とユニモーダル(テキスト)の両方の観点から評価される。
意外なことに、我々の実験では、ユニモーダル・アンラーニングのアルゴリズムは生成タスクやクローズタスクに優れており、マルチモーダル・アンラーニングのアプローチはマルチモーダル入力による分類タスクにおいてより優れている。
- 参考スコア(独自算出の注目度): 17.73279547506514
- License:
- Abstract: Generative models such as Large Language Models (LLM) and Multimodal Large Language models (MLLMs) trained on massive web corpora can memorize and disclose individuals' confidential and private data, raising legal and ethical concerns. While many previous works have addressed this issue in LLM via machine unlearning, it remains largely unexplored for MLLMs. To tackle this challenge, we introduce Multimodal Large Language Model Unlearning Benchmark (MLLMU-Bench), a novel benchmark aimed at advancing the understanding of multimodal machine unlearning. MLLMU-Bench consists of 500 fictitious profiles and 153 profiles for public celebrities, each profile feature over 14 customized question-answer pairs, evaluated from both multimodal (image+text) and unimodal (text) perspectives. The benchmark is divided into four sets to assess unlearning algorithms in terms of efficacy, generalizability, and model utility. Finally, we provide baseline results using existing generative model unlearning algorithms. Surprisingly, our experiments show that unimodal unlearning algorithms excel in generation and cloze tasks, while multimodal unlearning approaches perform better in classification tasks with multimodal inputs.
- Abstract(参考訳): 大規模言語モデル(LLM)やMLLM(Multimodal Large Language Model)のような生成モデルは、大規模なWebコーパスで訓練されたものであり、個人の機密データやプライベートデータを記憶し、公開し、法的および倫理的な懸念を提起することができる。
マシン・アンラーニング(英語版)を通じてLLMでこの問題に対処した以前の多くの研究は、MLLMでは明らかにされていない。
この課題に対処するために,マルチモーダル大規模言語モデルアンラーニングベンチマーク (MLLMU-Bench) を導入する。
MLLMU-Benchは500の架空のプロファイルと153のプロフィールで構成され、各プロファイルは14以上のカスタマイズされた質問応答ペアで構成され、マルチモーダル(画像+テキスト)とユニモーダル(テキスト)の両方の観点から評価される。
ベンチマークは、有効性、一般化可能性、モデルユーティリティの観点から、未学習アルゴリズムを評価するための4つのセットに分けられる。
最後に、既存の生成モデルアンラーニングアルゴリズムを用いてベースライン結果を提供する。
意外なことに、我々の実験では、ユニモーダル・アンラーニング・アルゴリズムは生成タスクとクローゼタスクに優れており、マルチモーダル・アンラーニング・アプローチはマルチモーダル・インプットによる分類タスクにおいてより優れている。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
NVLM 1.0は、フロンティアクラスのマルチモーダル言語モデル(LLM)のファミリーであり、視覚言語タスクの最先端結果を実現する。
トレーニング効率とマルチモーダル推論能力を両立させる新しいアーキテクチャを提案する。
我々は、NVLM-1.0モデルのための生産級マルチモーダリティを開発し、視覚言語タスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T17:59:06Z) - MLLM-FL: Multimodal Large Language Model Assisted Federated Learning on Heterogeneous and Long-tailed Data [25.45278447786954]
MLLM-FL(Multimodal Large Language Model Assisted Federated Learning)と呼ばれる新しいフェデレーション学習フレームワークを導入する。
当社のフレームワークは,Webサイトや強力なサーバサイド計算リソースからアクセス可能な,広範かつ未公開のオープンソースデータを活用することに長けています。
論文 参考訳(メタデータ) (2024-09-09T21:04:16Z) - UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models [0.42832989850721054]
MEL(Multimodal Entities Linking)は、ウィキペディアのようなマルチモーダル知識ベースの参照エンティティに、多モーダルコンテキスト内で曖昧な言及をリンクすることを目的とした重要なタスクである。
既存の方法はMELタスクを過度に複雑にし、視覚的意味情報を見渡す。
大規模言語モデルを用いたマルチモーダル・エンティティ・リンクタスクを処理するための新しいパラダイムを確立する統一フレームワークUniMELを提案する。
論文 参考訳(メタデータ) (2024-07-23T03:58:08Z) - LLMs Meet Multimodal Generation and Editing: A Survey [89.76691959033323]
本調査では,画像,ビデオ,3D,オーディオなど,さまざまな領域にわたるマルチモーダル生成と編集について詳述する。
これらの分野でのマイルストーンの成果を要約し、これらの研究をLLM法とCLIP/T5法に分類する。
我々は、既存の生成モデルを人間とコンピュータの相互作用に活用できるツール強化マルチモーダルエージェントを掘り下げる。
論文 参考訳(メタデータ) (2024-05-29T17:59:20Z) - Generative Multi-Modal Knowledge Retrieval with Large Language Models [75.70313858231833]
マルチモーダル知識検索のための革新的なエンドツーエンド生成フレームワークを提案する。
我々のフレームワークは,大規模言語モデル(LLM)が仮想知識ベースとして効果的に機能するという事実を生かしている。
強いベースラインと比較すると,すべての評価指標に対して3.0%から14.6%の大幅な改善が見られた。
論文 参考訳(メタデータ) (2024-01-16T08:44:29Z) - On the Performance of Multimodal Language Models [4.677125897916577]
本研究は、異なるマルチモーダル命令チューニングアプローチの比較分析を行う。
大規模言語モデルにマルチモーダル機能を組み込む際に,アーキテクチャ選択を導く上で重要な洞察を明らかにする。
論文 参考訳(メタデータ) (2023-10-04T23:33:36Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。