論文の概要: Abrupt Learning in Transformers: A Case Study on Matrix Completion
- arxiv url: http://arxiv.org/abs/2410.22244v1
- Date: Tue, 29 Oct 2024 17:08:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:42:24.364317
- Title: Abrupt Learning in Transformers: A Case Study on Matrix Completion
- Title(参考訳): 変圧器の急速学習 : マトリックス完了の事例研究
- Authors: Pulkit Gopalani, Ekdeep Singh Lubana, Wei Hu,
- Abstract要約: マスク付き言語モデリング(MLM)タスクとして低ランク行列補完問題を定式化する。
BERTモデルをトレーニングして,この課題を低誤差で解決できることが示される。
また、個々のモデルコンポーネントのトレーニングダイナミクスを分析し、突然の損失の減少を理解する。
- 参考スコア(独自算出の注目度): 15.210510215283882
- License:
- Abstract: Recent analysis on the training dynamics of Transformers has unveiled an interesting characteristic: the training loss plateaus for a significant number of training steps, and then suddenly (and sharply) drops to near--optimal values. To understand this phenomenon in depth, we formulate the low-rank matrix completion problem as a masked language modeling (MLM) task, and show that it is possible to train a BERT model to solve this task to low error. Furthermore, the loss curve shows a plateau early in training followed by a sudden drop to near-optimal values, despite no changes in the training procedure or hyper-parameters. To gain interpretability insights into this sudden drop, we examine the model's predictions, attention heads, and hidden states before and after this transition. Concretely, we observe that (a) the model transitions from simply copying the masked input to accurately predicting the masked entries; (b) the attention heads transition to interpretable patterns relevant to the task; and (c) the embeddings and hidden states encode information relevant to the problem. We also analyze the training dynamics of individual model components to understand the sudden drop in loss.
- Abstract(参考訳): トランスフォーマーのトレーニングダイナミクスに関する最近の分析は興味深い特徴を明らかにしている: トレーニング損失高原は、かなりの数のトレーニングステップに対して、そして突然(そして鋭く)、ほぼ最適値に低下する。
この現象を深く理解するために、マスク言語モデリング(MLM)タスクとして低ランク行列補完問題を定式化し、BERTモデルをトレーニングして低誤りにすることができることを示す。
さらに,トレーニングの初期段階では,トレーニング手順やハイパーパラメータに変化はなく,突然ほぼ最適値に低下する傾向がみられた。
この突然の落下に対する解釈可能性の洞察を得るために、この移行前後のモデルによる予測、注意ヘッド、隠れ状態について検討する。
具体的には、私たちはそれを観察します。
a) モデルが単に仮面の入力をコピーすることから、仮面の入力を正確に予測することに移行すること。
b) 注意は,課題に関連する解釈可能なパターンに遷移し,
(c)その問題に関連する情報をエンコードする埋め込み及び隠された状態。
また、個々のモデルコンポーネントのトレーニングダイナミクスを分析し、突然の損失の減少を理解する。
関連論文リスト
- Training Dynamics of Transformers to Recognize Word Co-occurrence via Gradient Flow Analysis [97.54180451650122]
本研究では,2つの単語の共起を認識するタスクにおいて,浅層変圧器を訓練するダイナミクスについて検討する。
我々は3つの注意行列と線形層を同時に学習する勾配流れのダイナミクスを解析した。
本研究では, 傾斜流の新たな特性として, 勾配のテクトリアルバランスを証明し, 異なる試料の損失値をほぼ同じ速度で減少させ, さらに, ほぼ最小限のトレーニング損失の証明を容易にする。
論文 参考訳(メタデータ) (2024-10-12T17:50:58Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
本稿では,学習可能なパラメータをわずかに限定して,事前学習した視覚変換器を下流認識タスクに適用する方法を示す。
学習可能で軽量なモジュールを用いてタスク固有のクエリを合成する。
本手法はメモリ制約下での最先端性能を実現し,実環境における適用性を示す。
論文 参考訳(メタデータ) (2024-07-09T15:45:04Z) - In-Context Convergence of Transformers [63.04956160537308]
勾配降下法により訓練したソフトマックスアテンションを有する一層変圧器の学習力学について検討した。
不均衡な特徴を持つデータに対しては、学習力学が段階的に収束する過程をとることを示す。
論文 参考訳(メタデータ) (2023-10-08T17:55:33Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
いくつかの自己回帰モデルは、入力シーケンスが処理されたときに学習でき、パラメータの変更を受けずに、それを行うように明示的に訓練されていない。
我々は,新しい入力が明らかになったときにモデルを調整するための補助学習アルゴリズムが,標準の次トーケン予測誤差最小化によって生まれることを示す。
本研究は、自己回帰損失最小化の産物としてコンテキスト内学習を説明し、新しい最適化ベースのトランスフォーマー層の設計を通知する。
論文 参考訳(メタデータ) (2023-09-11T22:42:50Z) - What Happens During Finetuning of Vision Transformers: An Invariance
Based Investigation [7.432224771219168]
Pretrain-finetuneパラダイムは、通常、同じタスクでモデルをスクラッチからトレーニングするよりも、下流のパフォーマンスを改善する。
本研究では,事前学習した視覚変換器とそれに対応する微調整バージョンとの関係を,複数のベンチマークデータセットとタスクで検討する。
論文 参考訳(メタデータ) (2023-07-12T08:35:24Z) - Trained Transformers Learn Linear Models In-Context [39.56636898650966]
トランスフォーマーとしての注意に基づくニューラルネットワークは、意図的学習(ICL)を示す顕著な能力を示した
線形回帰問題のランダムな例に対する変圧器の訓練において、これらのモデルの予測は通常の正方形の非線形性を模倣することを示した。
論文 参考訳(メタデータ) (2023-06-16T15:50:03Z) - Inverse Scaling: When Bigger Isn't Better [80.42834197416444]
大規模言語モデル(LM)は、スケールの増大による全体的な損失に対する予測可能な改善を示している。
我々は,LMが逆スケーリングや,スケールの増大に伴うタスクパフォーマンスの悪化を示す可能性があるという主張を裏付ける証拠を示す。
論文 参考訳(メタデータ) (2023-06-15T20:11:23Z) - Hard Patches Mining for Masked Image Modeling [52.46714618641274]
マスク付き画像モデリング(MIM)は、スケーラブルな視覚表現を学習する有望な可能性から、多くの研究の注目を集めている。
我々はMIM事前学習のための新しいフレームワークであるHPM(Hard Patches Mining)を提案する。
論文 参考訳(メタデータ) (2023-04-12T15:38:23Z) - On the Effect of Pre-training for Transformer in Different Modality on
Offline Reinforcement Learning [0.0]
本研究は,トランスフォーマーモデルからムジョコのオフライン強化学習タスクへの微調整に,言語や視覚などの異なるモーダルデータの事前学習がどのような影響を及ぼすかを検討する。
論文 参考訳(メタデータ) (2022-11-17T13:34:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。