Local Policies Enable Zero-shot Long-horizon Manipulation
- URL: http://arxiv.org/abs/2410.22332v1
- Date: Tue, 29 Oct 2024 17:59:55 GMT
- Title: Local Policies Enable Zero-shot Long-horizon Manipulation
- Authors: Murtaza Dalal, Min Liu, Walter Talbott, Chen Chen, Deepak Pathak, Jian Zhang, Ruslan Salakhutdinov,
- Abstract summary: We introduce ManipGen, which leverages a new class of policies for sim2real transfer: local policies.
ManipGen outperforms SOTA approaches such as SayCan, OpenVLA, LLMTrajGen and VoxPoser across 50 real-world manipulation tasks by 36%, 76%, 62% and 60% respectively.
- Score: 80.1161776000682
- License:
- Abstract: Sim2real for robotic manipulation is difficult due to the challenges of simulating complex contacts and generating realistic task distributions. To tackle the latter problem, we introduce ManipGen, which leverages a new class of policies for sim2real transfer: local policies. Locality enables a variety of appealing properties including invariances to absolute robot and object pose, skill ordering, and global scene configuration. We combine these policies with foundation models for vision, language and motion planning and demonstrate SOTA zero-shot performance of our method to Robosuite benchmark tasks in simulation (97%). We transfer our local policies from simulation to reality and observe they can solve unseen long-horizon manipulation tasks with up to 8 stages with significant pose, object and scene configuration variation. ManipGen outperforms SOTA approaches such as SayCan, OpenVLA, LLMTrajGen and VoxPoser across 50 real-world manipulation tasks by 36%, 76%, 62% and 60% respectively. Video results at https://mihdalal.github.io/manipgen/
Related papers
- TRANSIC: Sim-to-Real Policy Transfer by Learning from Online Correction [25.36756787147331]
Learning in simulation and transferring the learned policy to the real world has the potential to enable generalist robots.
We propose a data-driven approach to enable successful sim-to-real transfer based on a human-in-the-loop framework.
We show that our approach can achieve successful sim-to-real transfer in complex and contact-rich manipulation tasks such as furniture assembly.
arXiv Detail & Related papers (2024-05-16T17:59:07Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
Learning visuomotor policies in simulation is much safer and cheaper than in the real world.
However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots.
One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR)
arXiv Detail & Related papers (2023-07-28T05:47:24Z) - RH20T: A Comprehensive Robotic Dataset for Learning Diverse Skills in
One-Shot [56.130215236125224]
A key challenge in robotic manipulation in open domains is how to acquire diverse and generalizable skills for robots.
Recent research in one-shot imitation learning has shown promise in transferring trained policies to new tasks based on demonstrations.
This paper aims to unlock the potential for an agent to generalize to hundreds of real-world skills with multi-modal perception.
arXiv Detail & Related papers (2023-07-02T15:33:31Z) - HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile Manipulation [29.01984677695523]
We introduce Hybrid Actor-Critic Maps for Manipulation (HACMan), a reinforcement learning approach for 6D non-prehensile manipulation of objects.
We evaluate HACMan on a 6D object pose alignment task in both simulation and in the real world.
Compared to alternative action representations, HACMan achieves a success rate more than three times higher than the best baseline.
arXiv Detail & Related papers (2023-05-06T05:55:27Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - Sim-to-Real Transfer for Vision-and-Language Navigation [70.86250473583354]
We study the problem of releasing a robot in a previously unseen environment, and having it follow unconstrained natural language navigation instructions.
Recent work on the task of Vision-and-Language Navigation (VLN) has achieved significant progress in simulation.
To assess the implications of this work for robotics, we transfer a VLN agent trained in simulation to a physical robot.
arXiv Detail & Related papers (2020-11-07T16:49:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.