Neuromorphic Programming: Emerging Directions for Brain-Inspired Hardware
- URL: http://arxiv.org/abs/2410.22352v1
- Date: Tue, 15 Oct 2024 10:08:15 GMT
- Title: Neuromorphic Programming: Emerging Directions for Brain-Inspired Hardware
- Authors: Steven Abreu, Jens E. Pedersen,
- Abstract summary: Currently, neuromorphic hardware often relies on machine learning methods adapted from deep learning.
Neuromorphic computers have potential far beyond deep learning if we can only harness their energy efficiency and full computational power.
This paper presents a conceptual analysis of programming within the context of neuromorphic computing.
- Score: 0.0
- License:
- Abstract: The value of brain-inspired neuromorphic computers critically depends on our ability to program them for relevant tasks. Currently, neuromorphic hardware often relies on machine learning methods adapted from deep learning. However, neuromorphic computers have potential far beyond deep learning if we can only harness their energy efficiency and full computational power. Neuromorphic programming will necessarily be different from conventional programming, requiring a paradigm shift in how we think about programming. This paper presents a conceptual analysis of programming within the context of neuromorphic computing, challenging conventional paradigms and proposing a framework that aligns more closely with the physical intricacies of these systems. Our analysis revolves around five characteristics that are fundamental to neuromorphic programming and provides a basis for comparison to contemporary programming methods and languages. By studying past approaches, we contribute a framework that advocates for underutilized techniques and calls for richer abstractions to effectively instrument the new hardware class.
Related papers
- A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Neuromorphic Intermediate Representation: A Unified Instruction Set for Interoperable Brain-Inspired Computing [4.066607775161713]
Spiking neural networks and neuromorphic hardware platforms that simulate neuronal dynamics are getting wide attention.
Here, we establish a common reference frame for computations in digital neuromorphic systems.
We demonstrate by reproducing three spiking neural network models of different complexity across 7 neuromorphic simulators and 4 digital hardware platforms.
arXiv Detail & Related papers (2023-11-24T18:15:59Z) - Concepts and Paradigms for Neuromorphic Programming [0.0]
Currently, neuromorphic computers are mostly limited to machine learning methods adapted from deep learning.
Neuromorphic computers have potential far beyond deep learning if we can only make use of their computational properties to harness their full power.
arXiv Detail & Related papers (2023-10-27T16:48:11Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Neurocoder: Learning General-Purpose Computation Using Stored Neural
Programs [64.56890245622822]
Neurocoder is an entirely new class of general-purpose conditional computational machines.
It "codes" itself in a data-responsive way by composing relevant programs from a set of shareable, modular programs.
We show new capacity to learn modular programs, handle severe pattern shifts and remember old programs as new ones are learnt.
arXiv Detail & Related papers (2020-09-24T01:39:16Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z) - Memristors -- from In-memory computing, Deep Learning Acceleration,
Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired
Computing [25.16076541420544]
Machine learning, particularly in the form of deep learning, has driven most of the recent fundamental developments in artificial intelligence.
Deep learning has been successfully applied in areas such as object/pattern recognition, speech and natural language processing, self-driving vehicles, intelligent self-diagnostics tools, autonomous robots, knowledgeable personal assistants, and monitoring.
This paper reviews the case for a novel beyond CMOS hardware technology, memristors, as a potential solution for the implementation of power-efficient in-memory computing, deep learning accelerators, and spiking neural networks.
arXiv Detail & Related papers (2020-04-30T16:49:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.