Learning Goal-oriented Bimanual Dough Rolling Using Dynamic Heterogeneous Graph Based on Human Demonstration
- URL: http://arxiv.org/abs/2410.22355v1
- Date: Tue, 15 Oct 2024 16:12:00 GMT
- Title: Learning Goal-oriented Bimanual Dough Rolling Using Dynamic Heterogeneous Graph Based on Human Demonstration
- Authors: Junjia Liu, Chenzui Li, Shixiong Wang, Zhipeng Dong, Sylvain Calinon, Miao Li, Fei Chen,
- Abstract summary: Soft object manipulation poses significant challenges for robots, requiring effective techniques for state representation and manipulation policy learning.
This research paper introduces a novel approach: a dynamic heterogeneous graph-based model for learning goal-oriented soft object manipulation policies.
- Score: 19.74767906744719
- License:
- Abstract: Soft object manipulation poses significant challenges for robots, requiring effective techniques for state representation and manipulation policy learning. State representation involves capturing the dynamic changes in the environment, while manipulation policy learning focuses on establishing the relationship between robot actions and state transformations to achieve specific goals. To address these challenges, this research paper introduces a novel approach: a dynamic heterogeneous graph-based model for learning goal-oriented soft object manipulation policies. The proposed model utilizes graphs as a unified representation for both states and policy learning. By leveraging the dynamic graph, we can extract crucial information regarding object dynamics and manipulation policies. Furthermore, the model facilitates the integration of demonstrations, enabling guided policy learning. To evaluate the efficacy of our approach, we designed a dough rolling task and conducted experiments using both a differentiable simulator and a real-world humanoid robot. Additionally, several ablation studies were performed to analyze the effect of our method, demonstrating its superiority in achieving human-like behavior.
Related papers
- Learning Low-Dimensional Strain Models of Soft Robots by Looking at the Evolution of Their Shape with Application to Model-Based Control [2.058941610795796]
This paper introduces a streamlined method for learning low-dimensional, physics-based models.
We validate our approach through simulations with various planar soft manipulators.
Thanks to the capability of the method of generating physically compatible models, the learned models can be straightforwardly combined with model-based control policies.
arXiv Detail & Related papers (2024-10-31T18:37:22Z) - Dreamitate: Real-World Visuomotor Policy Learning via Video Generation [49.03287909942888]
We propose a visuomotor policy learning framework that fine-tunes a video diffusion model on human demonstrations of a given task.
We generate an example of an execution of the task conditioned on images of a novel scene, and use this synthesized execution directly to control the robot.
arXiv Detail & Related papers (2024-06-24T17:59:45Z) - Dynamic-Resolution Model Learning for Object Pile Manipulation [33.05246884209322]
We investigate how to learn dynamic and adaptive representations at different levels of abstraction to achieve the optimal trade-off between efficiency and effectiveness.
Specifically, we construct dynamic-resolution particle representations of the environment and learn a unified dynamics model using graph neural networks (GNNs)
We show that our method achieves significantly better performance than state-of-the-art fixed-resolution baselines at the gathering, sorting, and redistribution of granular object piles.
arXiv Detail & Related papers (2023-06-29T05:51:44Z) - SoftGPT: Learn Goal-oriented Soft Object Manipulation Skills by
Generative Pre-trained Heterogeneous Graph Transformer [34.86946655775187]
Soft object manipulation tasks in domestic scenes pose a significant challenge for existing robotic skill learning techniques.
We propose a pre-trained soft object manipulation skill learning model, namely SoftGPT, that is trained using large amounts of exploration data.
For each downstream task, a goal-oriented policy agent is trained to predict the subsequent actions, and SoftGPT generates the consequences.
arXiv Detail & Related papers (2023-06-22T05:48:22Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.
Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.
Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Self-Supervised Learning of Multi-Object Keypoints for Robotic
Manipulation [8.939008609565368]
In this paper, we demonstrate the efficacy of learning image keypoints via the Dense Correspondence pretext task for downstream policy learning.
We evaluate our approach on diverse robot manipulation tasks, compare it to other visual representation learning approaches, and demonstrate its flexibility and effectiveness for sample-efficient policy learning.
arXiv Detail & Related papers (2022-05-17T13:15:07Z) - Affordance Learning from Play for Sample-Efficient Policy Learning [30.701546777177555]
We use a self-supervised visual affordance model from human teleoperated play data to enable efficient policy learning and motion planning.
We combine model-based planning with model-free deep reinforcement learning to learn policies that favor the same object regions favored by people.
We find that our policies train 4x faster than the baselines and generalize better to novel objects because our visual affordance model can anticipate their affordance regions.
arXiv Detail & Related papers (2022-03-01T11:00:35Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Learning Predictive Representations for Deformable Objects Using
Contrastive Estimation [83.16948429592621]
We propose a new learning framework that jointly optimize both the visual representation model and the dynamics model.
We show substantial improvements over standard model-based learning techniques across our rope and cloth manipulation suite.
arXiv Detail & Related papers (2020-03-11T17:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.