論文の概要: Accelerating Augmentation Invariance Pretraining
- arxiv url: http://arxiv.org/abs/2410.22364v1
- Date: Sun, 27 Oct 2024 21:53:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:20.584005
- Title: Accelerating Augmentation Invariance Pretraining
- Title(参考訳): 拡張不変性事前トレーニングの高速化
- Authors: Jinhong Lin, Cheng-En Wu, Yibing Wei, Pedro Morgado,
- Abstract要約: 我々は、特に視覚変換器(ViT)の事前学習において、対照的な学習手法の計算課題に取り組む。
様々なシーケンス長の入力をまたいで一般化するViTのユニークな能力を生かしたアクセラレーションフレームワークを提案する。
本手法では,ランダム化トークンドロップアウトやフレキシブルパッチスケーリングなどのシーケンス圧縮戦略を併用することにより,勾配推定のコストを低減し,収束を加速する。
- 参考スコア(独自算出の注目度): 7.772780341646099
- License:
- Abstract: Our work tackles the computational challenges of contrastive learning methods, particularly for the pretraining of Vision Transformers (ViTs). Despite the effectiveness of contrastive learning, the substantial computational resources required for training often hinder their practical application. To mitigate this issue, we propose an acceleration framework, leveraging ViT's unique ability to generalize across inputs of varying sequence lengths. Our method employs a mix of sequence compression strategies, including randomized token dropout and flexible patch scaling, to reduce the cost of gradient estimation and accelerate convergence. We further provide an in-depth analysis of the gradient estimation error of various acceleration strategies as well as their impact on downstream tasks, offering valuable insights into the trade-offs between acceleration and performance. We also propose a novel procedure to identify an optimal acceleration schedule to adjust the sequence compression ratios to the training progress, ensuring efficient training without sacrificing downstream performance. Our approach significantly reduces computational overhead across various self-supervised learning algorithms on large-scale datasets. In ImageNet, our method achieves speedups of 4$\times$ in MoCo, 3.3$\times$ in SimCLR, and 2.5$\times$ in DINO, demonstrating substantial efficiency gains.
- Abstract(参考訳): 我々の研究は、特に視覚変換器(ViT)の事前学習において、対照的な学習手法の計算課題に取り組む。
対照的な学習の有効性にもかかわらず、訓練に必要なかなりの計算資源は、しばしば実践的な応用を妨げる。
この問題を緩和するために, 様々なシーケンス長の入力を一般化するViTのユニークな能力を活用するアクセラレーションフレームワークを提案する。
本手法では,ランダム化トークンドロップアウトやフレキシブルパッチスケーリングなどのシーケンス圧縮戦略を併用することにより,勾配推定のコストを低減し,収束を加速する。
さらに、様々な加速度戦略の勾配推定誤差の詳細な分析と下流タスクへの影響について分析し、加速度と性能のトレードオフに関する貴重な洞察を提供する。
また,下流性能を犠牲にすることなく,シーケンス圧縮率をトレーニングの進行度に調整し,効率の良いトレーニングを確保するために,最適な加速スケジュールを同定する手法を提案する。
提案手法は,大規模データセット上での各種自己教師付き学習アルゴリズムにおける計算オーバーヘッドを大幅に低減する。
ImageNet では,MoCo では 4$\times$,SimCLR では 3.3$\times$,DINO では 2.5$\times$ の高速化を実現し,大幅な効率向上を実現している。
関連論文リスト
- Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
我々は、事前訓練されたモデルのゼロショット構造化プルーニングにより、性能を最小限に抑えて計算効率を向上させることができると主張している。
その結果,事前訓練されたモデルの畳み込み畳み込みフィルタは,低計算条件下で20%以上の性能向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-25T21:49:09Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
フェデレートラーニング(FL)により、分散クライアントは、生データを互いに共有することなく、機械学習モデルを協調的にトレーニングできる。
モデルのサイズが大きくなるにつれて、送信帯域の制限によるトレーニングのレイテンシが低下し、個人情報が劣化すると同時に、差分プライバシ(DP)保護を使用する。
我々は、収束性能を犠牲にすることなく、トレーニング効率を向上させるために、FLフレームワーク無線チャネルのスペース化を提案する。
論文 参考訳(メタデータ) (2023-04-09T05:21:15Z) - Hyper-Learning for Gradient-Based Batch Size Adaptation [2.944323057176686]
バッチサイズをスケジューリングして拡大することは、ディープニューラルネットワークをトレーニングする際のノイズを制御する効果的な戦略である。
学習可能なスケジューリングのためのバッチサイズ適応を行うためのアルゴリズムとしてArbiterを導入する。
いくつかの実験でArbiterの有効性を実証した。
論文 参考訳(メタデータ) (2022-05-17T11:01:14Z) - Online Convolutional Re-parameterization [51.97831675242173]
2段階のパイプラインであるオンライン畳み込み再パラメータ化(OREPA)は、複雑なトレーニング時間ブロックを単一の畳み込みに絞ることで、巨大なトレーニングオーバーヘッドを低減することを目的としている。
最先端のre-paramモデルと比較して、OREPAはトレーニング時間のメモリコストを約70%削減し、トレーニング速度を約2倍向上させることができる。
また、オブジェクト検出とセマンティックセグメンテーションの実験を行い、下流タスクに一貫した改善を示す。
論文 参考訳(メタデータ) (2022-04-02T09:50:19Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot Object Detection (FSOD) は、未確認のタスクに少ないトレーニングサンプルで適応できるジェネリック検出器を学習することを目的としている。
計算量の増加を伴わない効率的なプレトレイン・トランスファー・フレームワーク(PTF)のベースラインを提案する。
また,予測された新しいウェイトと事前訓練されたベースウェイトとのベクトル長の不整合を軽減するために,適応長再スケーリング(ALR)戦略を提案する。
論文 参考訳(メタデータ) (2022-03-23T06:24:31Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Dynamic Scale Training for Object Detection [111.33112051962514]
本稿では,オブジェクト検出におけるスケール変動問題を軽減するために,動的スケールトレーニングパラダイム(DST)を提案する。
提案したDSTのスケール変動処理に対する有効性を示す実験結果を得た。
推論オーバーヘッドを導入せず、一般的な検出設定のための無料ランチとして機能する。
論文 参考訳(メタデータ) (2020-04-26T16:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。