論文の概要: Vascular Segmentation of Functional Ultrasound Images using Deep Learning
- arxiv url: http://arxiv.org/abs/2410.22365v1
- Date: Mon, 28 Oct 2024 09:00:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:01.328609
- Title: Vascular Segmentation of Functional Ultrasound Images using Deep Learning
- Title(参考訳): 深層学習を用いた機能的超音波画像の血管分割
- Authors: Hana Sebia, Thomas Guyet, Mickaël Pereira, Marco Valdebenito, Hugues Berry, Benjamin Vidal,
- Abstract要約: 機能的超音波(fUS)画像のための,最初のディープラーニングベースセグメンテーションツールを紹介する。
競合セグメンテーション性能を90%の精度で達成し、71%の堅牢性と0.59のIUをfUSスタックから100フレームの時間フレームで実現した。
この研究は、ローカライゼーション顕微鏡に代わる非侵襲的で費用効果の高い代替手段を提供し、fUSデータの解釈を強化し、血管機能の理解を改善している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Segmentation of medical images is a fundamental task with numerous applications. While MRI, CT, and PET modalities have significantly benefited from deep learning segmentation techniques, more recent modalities, like functional ultrasound (fUS), have seen limited progress. fUS is a non invasive imaging method that measures changes in cerebral blood volume (CBV) with high spatio-temporal resolution. However, distinguishing arterioles from venules in fUS is challenging due to opposing blood flow directions within the same pixel. Ultrasound localization microscopy (ULM) can enhance resolution by tracking microbubble contrast agents but is invasive, and lacks dynamic CBV quantification. In this paper, we introduce the first deep learning-based segmentation tool for fUS images, capable of differentiating signals from different vascular compartments, based on ULM automatic annotation and enabling dynamic CBV quantification. We evaluate various UNet architectures on fUS images of rat brains, achieving competitive segmentation performance, with 90% accuracy, a 71% F1 score, and an IoU of 0.59, using only 100 temporal frames from a fUS stack. These results are comparable to those from tubular structure segmentation in other imaging modalities. Additionally, models trained on resting-state data generalize well to images captured during visual stimulation, highlighting robustness. This work offers a non-invasive, cost-effective alternative to ULM, enhancing fUS data interpretation and improving understanding of vessel function. Our pipeline shows high linear correlation coefficients between signals from predicted and actual compartments in both cortical and deeperregions, showcasing its ability to accurately capture blood flow dynamics.
- Abstract(参考訳): 医療画像のセグメンテーションは多くの応用において基本的な課題である。
MRI, CT, PETモダリティは深層学習のセグメンテーション技術から大きな恩恵を受けているが, 機能的超音波(fUS)のような近年のモダリティは進歩が限られている。
fUSは、高時空間分解能で脳血流量(CBV)の変化を測定する非侵襲的イメージング法である。
しかし,fUSでは同じ画素内における血流方向に逆らうため,動脈と静脈との鑑別は困難である。
超音波ローカライゼーション顕微鏡(ULM)は、マイクロバブルコントラスト剤を追跡することで分解能を高めることができるが、侵襲的であり、CBVの動的定量化に欠ける。
本稿では,ULM自動アノテーションに基づいて異なる血管区画からの信号を識別し,動的CBV定量化を可能にする,fUS画像のための最初のディープラーニングベースセグメンテーションツールを提案する。
我々は,ラット脳のfUS画像上で様々なUNetアーキテクチャを評価し,fUSスタックから100フレームの時間フレームのみを用いて,90%の精度,71%のF1スコア,0.59のIoUで競合セグメンテーション性能を達成した。
これらの結果は、他の画像モダリティにおける管状構造セグメンテーションのものと同等である。
さらに、静止状態データに基づいてトレーニングされたモデルは、視覚刺激中に撮影された画像によく一般化され、堅牢性を強調します。
この研究は、ULMの非侵襲的で費用対効果のある代替手段を提供し、fUSデータの解釈を強化し、容器機能の理解を向上させる。
我々のパイプラインは、皮質と深部の両方の領域で予測された信号と実際のコンパートメントの間の高い線形相関係数を示し、血流動態を正確に捉える能力を示している。
関連論文リスト
- NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Multi-scale Multi-site Renal Microvascular Structures Segmentation for
Whole Slide Imaging in Renal Pathology [4.743463035587953]
Omni-Segは,マルチサイト,マルチスケールのトレーニングデータを活用する新しい動的ネットワーク手法である。
我々は、HuBMAPとNEPTUNEという2つのデータセットの画像を用いて、特異なディープネットワークを訓練する。
提案手法は,腎微小血管構造の定量的解析のための強力な計算ツールを腎病理医に提供する。
論文 参考訳(メタデータ) (2023-08-10T16:26:03Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
本稿では,より高速でリアルなOCTA合成のために,空間コロニー化に基づく網膜血管網の軽量なシミュレーションを行う。
本研究では,3つの公開データセットに対する定量的および定性的実験において,提案手法の優れたセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2023-06-19T14:01:47Z) - MAF-Net: Multiple attention-guided fusion network for fundus vascular
image segmentation [1.3295074739915493]
網膜基底画像の血管を正確に検出するマルチアテンション誘導核融合ネットワーク(MAF-Net)を提案する。
従来のUNetベースのモデルは、長距離依存を明示的にモデル化するため、部分的な情報を失う可能性がある。
提案手法は,いくつかの最先端手法と比較して良好な結果が得られることを示す。
論文 参考訳(メタデータ) (2023-05-05T15:22:20Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
ヒト脳の132領域への高速かつ正確なセグメンテーションのための新しい深層学習法を提案する。
提案モデルは、効率的なU-Netライクなネットワークと、異なるビューと階層関係の交差点の利点を利用する。
提案手法は,画像の事前処理や性能低下を伴わずに頭蓋骨や他の人工物を含む脳MRIデータに適用することができる。
論文 参考訳(メタデータ) (2022-08-30T16:06:07Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
本稿では,形態素前処理と拡張U-netアーキテクチャを併用した画像強調手法を提案する。
ROC曲線 (>0.9762) と分類精度 (>95.47%) の領域において、領域内の他のアルゴリズムと比較して顕著な改善が得られた。
論文 参考訳(メタデータ) (2022-03-18T15:26:05Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。