論文の概要: Project MPG: towards a generalized performance benchmark for LLM capabilities
- arxiv url: http://arxiv.org/abs/2410.22368v1
- Date: Mon, 28 Oct 2024 21:25:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:29:04.040573
- Title: Project MPG: towards a generalized performance benchmark for LLM capabilities
- Title(参考訳): プロジェクトMPG:LLMの汎用性能ベンチマークに向けて
- Authors: Lucas Spangher, Tianle Li, William F. Arnold, Nick Masiewicki, Xerxes Dotiwalla, Rama Parusmathi, Peter Grabowski, Eugene Ie, Dan Gruhl,
- Abstract要約: 本稿では,ベンチマークの一般的な空間にまたがって性能を集約する手法を提案する。
私たちは2つの数字を作成します: "Goodness" 番号(回答精度)と "Fastness" 番号(コストまたはQPS)。
スコアの生の相関とピアソン・アリーナの相関は有意な一致を示した。
- 参考スコア(独自算出の注目度): 4.348365973413145
- License:
- Abstract: There exists an extremely wide array of LLM benchmarking tasks, whereas oftentimes a single number is the most actionable for decision-making, especially by non-experts. No such aggregation schema exists that is not Elo-based, which could be costly or time-consuming. Here we propose a method to aggregate performance across a general space of benchmarks, nicknamed Project "MPG," dubbed Model Performance and Goodness, additionally referencing a metric widely understood to be an important yet inaccurate and crude measure of car performance. Here, we create two numbers: a "Goodness" number (answer accuracy) and a "Fastness" number (cost or QPS). We compare models against each other and present a ranking according to our general metric as well as subdomains. We find significant agreement between the raw Pearson correlation of our scores and those of Chatbot Arena, even improving on the correlation of the MMLU leaderboard to Chatbot Arena.
- Abstract(参考訳): 非常に幅広いLSMベンチマークタスクが存在し、一方1つの数字は、特に非専門家の意思決定に最も有効である。
このようなアグリゲーションスキーマはEloベースではないため,コストや時間を要するものはありません。
本稿では,モデル性能とグッドネス(Model Performance and Goodness)と呼ばれる,一般的なベンチマークの空間にまたがる性能を集約する手法を提案する。
ここでは、"Goodness" と "Fastness" の2つの数値(コストまたはQPS)を作成する。
我々は、モデルを互いに比較し、我々の一般的な測定基準とサブドメインに従ってランク付けする。
スコアの生Pearson相関とChatbot Arenaの生Pearson相関との間には,MMLUリーダーボードとChatbot Arenaとの相関性も向上した。
関連論文リスト
- SkillAggregation: Reference-free LLM-Dependent Aggregation [14.46141987797362]
大規模言語モデル(LLM)は、NLPタスクの評価にますます使用される。
最近の研究は、審査員が性能を向上させるために複数のLLMを使うことを示唆している。
この研究は、参照ラベルが使用できない複数のシステムからの予測を集約することに焦点を当てている。
論文 参考訳(メタデータ) (2024-10-14T07:13:47Z) - HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly [34.205934899868346]
HELMETは7つの多様なアプリケーション中心のカテゴリを包含する総合ベンチマークである。
NIAHのような合成タスクは、下流のパフォーマンスの予測に適していないことが分かりました。
ほとんどのLCLMは完全なNIAHスコアを達成しているが、タスクがフルコンテキスト推論を必要とする場合、オープンソースモデルはクローズドなスコアよりも大幅に遅れている。
論文 参考訳(メタデータ) (2024-10-03T17:20:11Z) - Mathador-LM: A Dynamic Benchmark for Mathematical Reasoning on Large Language Models [34.814875040792344]
大規模言語モデル(LLM)の数学的推論を評価するための新しいベンチマークであるMathador-LMを紹介する。
Mathador-LMはMathadorゲームにインスパイアされており、そのゲームの目的は、与えられた基本数の集合の基本的な算術演算を用いてターゲット数に到達することである。
先行するLLMに対して,目標の難易度に従って,ベンチマークインスタンスを動的に生成しながら,安定した平均性能が得られることを示す。
論文 参考訳(メタデータ) (2024-06-18T13:02:12Z) - MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures [57.886592207948844]
市販のベンチマークを戦略的に混合することにより,効率的な金標準評価を実現するための新しいパラダイムであるMixEvalを提案する。
提案手法は,(1)包括的でよく分散された実世界のユーザクエリと(2)Webから抽出したクエリと,既存のベンチマークからの類似したクエリとをマッチングすることによって,効率よく,かつ,かなり改善された基盤トラスベースのベンチマークを橋渡しする。
論文 参考訳(メタデータ) (2024-06-03T05:47:05Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
MLLM(Multi-modal Large Language Models)は人工知能の分野で注目されている。
本ベンチマークは, 帰納的, 帰納的, 類推的推論の3つの主要な推論カテゴリから構成される。
我々は,この厳密に開発されたオープンエンド多段階精巧な推論ベンチマークを用いて,代表MLLMの選択を評価する。
論文 参考訳(メタデータ) (2023-11-20T07:06:31Z) - Flames: Benchmarking Value Alignment of LLMs in Chinese [86.73527292670308]
本稿では,Flamesという値アライメントベンチマークを提案する。
一般的な無害の原則と、特定の中国の価値観を統合するユニークな道徳的側面の両方を包含している。
以上の結果から, 評価されたLLMはフラムに対して比較的低い性能を示した。
論文 参考訳(メタデータ) (2023-11-12T17:18:21Z) - Generating Benchmarks for Factuality Evaluation of Language Models [61.69950787311278]
FACTOR: Factual Assessment via Corpus Transformation, a scalable approach for LM factuality。
FACTORは、興味のある事実のコーパスをLMの正当性を評価するベンチマークに自動的に変換し、コーパスから真事実を生成する。
その結果, (i) ベンチマークスコアはモデルサイズに応じて増加し, LMが検索によって拡張されたときに向上する; (ii) ベンチマークスコアとパープレキシティは必ずしもモデルランキングに一致しない; (iii) パープレキシティとベンチマークスコアが一致しない場合, 後者はオープンエンド世代における事実性を反映する。
論文 参考訳(メタデータ) (2023-07-13T17:14:38Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z) - Evaluating the Factual Consistency of Large Language Models Through News
Summarization [97.04685401448499]
本稿では,要約タスクに着目したFIB(Factual Inconsistency Benchmark)と呼ばれる新しいベンチマークを提案する。
現実的に一貫した要約では、手作業で事実的に一貫したものとして検証する、人書きの参照要約を使用します。
現実的に矛盾しない要約に対して、我々は、事実的に矛盾しているとして手動で注釈付けした一連の要約モデルから要約を生成する。
論文 参考訳(メタデータ) (2022-11-15T18:50:34Z) - How not to Lie with a Benchmark: Rearranging NLP Leaderboards [0.0]
一般的なNLPベンチマークの総合評価手法について検討し、幾何平均と調和平均でモデルを並べ替える。
我々は、GLUE、SuperGLUE、XGLUE、XTREMEなどの人気のあるベンチマークを分析した。
論文 参考訳(メタデータ) (2021-12-02T15:40:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。