A Large Recurrent Action Model: xLSTM enables Fast Inference for Robotics Tasks
- URL: http://arxiv.org/abs/2410.22391v2
- Date: Thu, 20 Feb 2025 09:29:58 GMT
- Title: A Large Recurrent Action Model: xLSTM enables Fast Inference for Robotics Tasks
- Authors: Thomas Schmied, Thomas Adler, Vihang Patil, Maximilian Beck, Korbinian Pöppel, Johannes Brandstetter, Günter Klambauer, Razvan Pascanu, Sepp Hochreiter,
- Abstract summary: We propose a Large Recurrent Action Model (LRAM) with an xLSTM at its core that comes with linear-time inference complexity and natural sequence length extrapolation abilities.<n>Experiments on 432 tasks from 6 domains show that LRAM compares favorably to Transformers in terms of performance and speed.
- Score: 25.961645453318873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, there has been a trend in the field of Reinforcement Learning (RL) towards large action models trained offline on large-scale datasets via sequence modeling. Existing models are primarily based on the Transformer architecture, which result in powerful agents. However, due to slow inference times, Transformer-based approaches are impractical for real-time applications, such as robotics. Recently, modern recurrent architectures, such as xLSTM and Mamba, have been proposed that exhibit parallelization benefits during training similar to the Transformer architecture while offering fast inference. In this work, we study the aptitude of these modern recurrent architectures for large action models. Consequently, we propose a Large Recurrent Action Model (LRAM) with an xLSTM at its core that comes with linear-time inference complexity and natural sequence length extrapolation abilities. Experiments on 432 tasks from 6 domains show that LRAM compares favorably to Transformers in terms of performance and speed.
Related papers
- Bidirectional Linear Recurrent Models for Sequence-Level Multisource Fusion [10.867398697751742]
We introduce BLUR (Bidirectional Linear Unit for Recurrent network), which uses forward and backward linear recurrent units (LRUs) to capture both past and future dependencies with high computational efficiency.
Experiments on sequential image and time series datasets reveal that BLUR not only surpasses transformers and traditional RNNs in accuracy but also significantly reduces computational costs.
arXiv Detail & Related papers (2025-04-11T20:42:58Z) - Sliding Window Attention Training for Efficient Large Language Models [55.56483740523027]
We introduce SWAT, which enables efficient long-context handling via Sliding Window Attention Training.
This paper first attributes the inefficiency of Transformers to the attention sink phenomenon resulting from the high variance of softmax operation.
Experiments demonstrate that SWAT achieves SOTA performance compared with state-of-the-art linear recurrent architectures on eight benchmarks.
arXiv Detail & Related papers (2025-02-26T05:31:44Z) - Were RNNs All We Needed? [55.822693848969855]
In this work, we revisit sequence modelling from a historical perspective, focusing on Recurrent Neural Networks (RNNs)
We demonstrate that by simplifying these models, we can derive minimal versions (minLSTMs and minGRUs) that use fewer parameters than their traditional counterparts, are fully parallelizable during training, and achieve surprisingly competitive performance on a range of tasks, rivalling recent models including Transformers.
arXiv Detail & Related papers (2024-10-02T03:06:49Z) - Scaling-laws for Large Time-series Models [2.0671213754662343]
Time series forecasting shares a similar sequential structure to language, and is amenable to large-scale transformer architectures.
We show that foundational decoder-only time series transformer models exhibit analogous scaling-behavior to LLMs.
We assemble a large corpus of heterogenous time series data on which to train, and establish, for the first time, power-law scaling relations with respect to parameter count, dataset size, and training compute.
arXiv Detail & Related papers (2024-05-22T17:48:17Z) - Linearizing Large Language Models [26.94551511277412]
We present a method to uptrain existing large pre-trained transformers into Recurrent Neural Networks (RNNs) with a modest compute budget.
We find that our linearization technique leads to competitive performance on standard benchmarks, but we identify persistent in-context learning and long-context modeling shortfalls for even the largest linear models.
arXiv Detail & Related papers (2024-05-10T17:59:08Z) - Repeat After Me: Transformers are Better than State Space Models at Copying [53.47717661441142]
We show that while generalized state space models are promising in terms of inference-time efficiency, they are limited compared to transformer models on tasks that require copying from the input context.
arXiv Detail & Related papers (2024-02-01T21:44:11Z) - Mamba: Linear-Time Sequence Modeling with Selective State Spaces [31.985243136674146]
Foundation models are almost universally based on the Transformer architecture and its core attention module.
We identify that a key weakness of such models is their inability to perform content-based reasoning.
We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even blocks (Mamba)
As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics.
arXiv Detail & Related papers (2023-12-01T18:01:34Z) - Convolutional State Space Models for Long-Range Spatiotemporal Modeling [65.0993000439043]
ConvS5 is an efficient variant for long-rangetemporal modeling.
It significantly outperforms Transformers and ConvNISTTM on a long horizon Moving-Lab experiment while training 3X faster than ConvLSTM and generating samples 400X faster than Transformers.
arXiv Detail & Related papers (2023-10-30T16:11:06Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
We show that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
This is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
arXiv Detail & Related papers (2023-05-26T00:43:02Z) - Fourier Transformer: Fast Long Range Modeling by Removing Sequence
Redundancy with FFT Operator [24.690247474891958]
Fourier Transformer is able to significantly reduce computational costs while retain the ability to inherit from various large pretrained models.
Our model achieves state-of-the-art performances among all transformer-based models on the long-range modeling benchmark LRA.
For generative seq-to-seq tasks including CNN/DailyMail and ELI5, by inheriting the BART weights our model outperforms the standard BART.
arXiv Detail & Related papers (2023-05-24T12:33:06Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
We propose a novel model architecture that combines the efficient parallelizable training of transformers with the efficient inference of RNNs.
We scale our models as large as 14 billion parameters, by far the largest dense RNN ever trained, and find RWKV performs on par with similarly sized Transformers.
arXiv Detail & Related papers (2023-05-22T13:57:41Z) - Learning to Grow Pretrained Models for Efficient Transformer Training [72.20676008625641]
We learn to grow pretrained transformers, where we learn to linearly map the parameters of the smaller model to initialize the larger model.
Experiments across both language and vision transformers demonstrate that our learned Linear Growth Operator (LiGO) can save up to 50% computational cost of training from scratch.
arXiv Detail & Related papers (2023-03-02T05:21:18Z) - Efficient Transformers in Reinforcement Learning using Actor-Learner
Distillation [91.05073136215886]
"Actor-Learner Distillation" transfers learning progress from a large capacity learner model to a small capacity actor model.
We demonstrate in several challenging memory environments that using Actor-Learner Distillation recovers the clear sample-efficiency gains of the transformer learner model.
arXiv Detail & Related papers (2021-04-04T17:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.