論文の概要: ML Research Benchmark
- arxiv url: http://arxiv.org/abs/2410.22553v1
- Date: Tue, 29 Oct 2024 21:38:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:04.724099
- Title: ML Research Benchmark
- Title(参考訳): MLリサーチベンチマーク
- Authors: Matthew Kenney,
- Abstract要約: MLRB(ML Research Benchmark)は,最近の機械学習カンファレンスのトラックから派生した7つの競合レベルタスクからなる。
本稿では,Claude-3 や GPT-4o などのフロンティアモデルを用いたエージェント足場を用いて,新しいベンチマークを提案し,評価する。
結果は、Claude-3.5 Sonnetエージェントがベンチマーク全体で最高のパフォーマンスを示し、機械学習モデルの設計と開発に優れていたことを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Artificial intelligence agents are increasingly capable of performing complex tasks across various domains. As these agents advance, there is a growing need to accurately measure and benchmark their capabilities, particularly in accelerating AI research and development. Current benchmarks focus on general machine learning tasks, but lack comprehensive evaluation methods for assessing AI agents' abilities in tackling research-level problems and competition-level challenges in the field of AI. We present the ML Research Benchmark (MLRB), comprising 7 competition-level tasks derived from recent machine learning conference tracks. These tasks span activities typically undertaken by AI researchers, including model training efficiency, pretraining on limited data, domain specific fine-tuning, and model compression. This paper introduces a novel benchmark and evaluates it using agent scaffolds powered by frontier models, including Claude-3 and GPT-4o. The results indicate that the Claude-3.5 Sonnet agent performs best across our benchmark, excelling in planning and developing machine learning models. However, both tested agents struggled to perform non-trivial research iterations. We observed significant performance variations across tasks, highlighting the complexity of AI development and the challenges in creating versatile agent scaffolds. While current AI agents can successfully navigate complex instructions and produce baseline results, they fall short of the capabilities required for advanced AI research. The ML Research Benchmark provides a valuable framework for assessing and comparing AI agents on tasks mirroring real-world AI research challenges.
- Abstract(参考訳): 人工知能エージェントは、さまざまな領域にわたる複雑なタスクを実行する能力がますます高まっている。
これらのエージェントが進むにつれて、特にAIの研究と開発を加速するために、その能力を正確に測定し、ベンチマークする必要性が高まっている。
現在のベンチマークでは、一般的な機械学習タスクに重点を置いているが、AIの分野における研究レベルの問題や競争レベルの課題に対処するAIエージェントの能力を評価するための包括的な評価方法がない。
MLRB(ML Research Benchmark)は,最近の機械学習カンファレンスのトラックから派生した7つの競合レベルタスクからなる。
これらのタスクは、モデルトレーニング効率、限られたデータに対する事前トレーニング、ドメイン固有の微調整、モデル圧縮など、AI研究者が通常行うアクティビティにまたがる。
本稿では,Claude-3 や GPT-4o などのフロンティアモデルを用いたエージェント足場を用いて,新しいベンチマークを提案し,評価する。
結果は、Claude-3.5 Sonnetエージェントがベンチマーク全体で最高のパフォーマンスを示し、機械学習モデルの設計と開発に優れていたことを示唆している。
しかし、両方の試験されたエージェントは、非自明な研究イテレーションを実行するのに苦労した。
我々は、AI開発における複雑さと汎用エージェントの足場構築における課題を強調し、タスク間での大幅なパフォーマンスの変化を観察した。
現在のAIエージェントは複雑な命令をうまくナビゲートし、ベースライン結果を生成することができるが、高度なAI研究に必要な能力には劣る。
ML Research Benchmarkは、現実のAI研究課題を反映したタスクにおいて、AIエージェントを評価し比較するための貴重なフレームワークを提供する。
関連論文リスト
- ExACT: Teaching AI Agents to Explore with Reflective-MCTS and Exploratory Learning [78.42927884000673]
ExACTは、エージェントアプリケーションのためのo1のようなモデルを構築するために、テスト時間検索と自己学習を組み合わせるアプローチである。
リフレクティブモンテカルロ木探索(Reflective Monte Carlo Tree Search, R-MCTS)は、AIエージェントがその場で意思決定空間を探索する能力を高めるために設計された新しいテストタイムアルゴリズムである。
次に,探索学習(Exploratory Learning)という,外部探索アルゴリズムに頼らずに,エージェントに推論時間での探索を教える新しい学習戦略を紹介する。
論文 参考訳(メタデータ) (2024-10-02T21:42:35Z) - CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark [11.794931453828974]
CORE-Benchは3つの分野(コンピュータ科学、社会科学、医学)にわたる90の科学論文に基づく270のタスクからなるベンチマークである。
エージェントの精度を高速かつ並列に測定する評価システムを提案する。
最高のエージェントは、最も難しいタスクにおいて21%の精度を達成した。
論文 参考訳(メタデータ) (2024-09-17T17:13:19Z) - MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains [54.117238759317004]
大規模マルチタスクエージェント理解(MMAU)ベンチマークは、複雑な環境設定を必要としない包括的なオフラインタスクを特徴としている。
ツールユース、DAG(Directed Acyclic Graph)QA、データサイエンスと機械学習コーディング、コンテストレベルのプログラミング、数学の5分野にわたるモデルを評価する。
3K以上の異なるプロンプトを含む20の精巧に設計されたタスクにより、MMAUはLLMエージェントの強度と限界を評価するための包括的なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-07-18T00:58:41Z) - OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
我々は,11,163のバイリンガル問題を含む,テキストのみとインターリーブされたテキストイメージのモダリティを紹介する。
これらの課題には、7つのフィールドと62の国際オリンピック大会にわたる幅広い規律が含まれており、データ漏洩について厳格に調査されている。
我々の評価によると、GPT-4oのような先進モデルでさえ、複雑な推論とマルチモーダル統合における現在のAI制限を反映して、全体的な精度は39.97%しか達成していない。
論文 参考訳(メタデータ) (2024-06-18T16:20:53Z) - DISCOVERYWORLD: A Virtual Environment for Developing and Evaluating Automated Scientific Discovery Agents [49.74065769505137]
本研究では,新しい科学的発見の完全なサイクルを実行するエージェントの能力を開発し,ベンチマークする最初の仮想環境であるDiscoVERYWORLDを紹介する。
8つのトピックにまたがる120の異なる課題タスクが含まれており、3レベルの難易度といくつかのパラメトリックなバリエーションがある。
従来の環境においてよく機能する強力なベースラインエージェントが、ほとんどのdiscoVERYWORLDタスクに苦労していることがわかった。
論文 参考訳(メタデータ) (2024-06-10T20:08:44Z) - Characteristic AI Agents via Large Language Models [40.10858767752735]
本研究は,特有なAIエージェント構築における大規模言語モデルの性能調査に焦点をあてる。
character100''と呼ばれるデータセットがこのベンチマークのために構築されており、ウィキペディアの言語モデルでロールプレイを行う最も訪問者の多い人々で構成されている。
実験結果から,LLMの能力向上に向けた潜在的な方向性が明らかにされた。
論文 参考訳(メタデータ) (2024-03-19T02:25:29Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
大規模言語モデル(LLM)と生成AIツールは、バイアスを特定し、対処する上での課題を提示している。
生成型AIツールは、不正な一般化、幻覚、レッド・チーム・プロンプトのような敵攻撃を目標とする可能性がある。
研究原稿の執筆過程に生成AIを組み込むことで,新しいタイプの文脈依存型アルゴリズムバイアスがもたらされることがわかった。
論文 参考訳(メタデータ) (2023-12-04T04:05:04Z) - A Comprehensive Performance Study of Large Language Models on Novel AI
Accelerators [2.88634411143577]
大規模言語モデル(LLM)は、いくつかの課題に対処するための有望なアプローチと考えられている。
専門のAIアクセラレータハードウェアシステムは、最近、AIアプリケーションの高速化に利用できるようになった。
論文 参考訳(メタデータ) (2023-10-06T21:55:57Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing [88.35145788575348]
画像異常検出(英: Image Anomaly Detection、IAD)は、産業用コンピュータビジョンの課題である。
統一IMベンチマークの欠如は、現実世界のアプリケーションにおけるIADメソッドの開発と利用を妨げる。
7つの主要なデータセットに19のアルゴリズムを含む包括的画像異常検出ベンチマーク(IM-IAD)を構築した。
論文 参考訳(メタデータ) (2023-01-31T01:24:45Z) - A Survey of Embodied AI: From Simulators to Research Tasks [13.923234397344487]
ネットワークAI」の時代から「身体AI」への新たなパラダイムシフト
本稿では,最先端のAIシミュレータと研究を包括的に調査する。
論文 参考訳(メタデータ) (2021-03-08T17:31:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。