Inference in Partially Linear Models under Dependent Data with Deep Neural Networks
- URL: http://arxiv.org/abs/2410.22574v1
- Date: Tue, 29 Oct 2024 22:29:31 GMT
- Title: Inference in Partially Linear Models under Dependent Data with Deep Neural Networks
- Authors: Chad Brown,
- Abstract summary: I consider inference in a partially linear regression model under stationary $beta$-mixing data after first stage deep neural network (DNN) estimation.
By avoiding sample splitting, I address one of the key challenges in applying machine learning techniques to econometric models with dependent data.
- Score: 0.0
- License:
- Abstract: I consider inference in a partially linear regression model under stationary $\beta$-mixing data after first stage deep neural network (DNN) estimation. Using the DNN results of Brown (2024), I show that the estimator for the finite dimensional parameter, constructed using DNN-estimated nuisance components, achieves $\sqrt{n}$-consistency and asymptotic normality. By avoiding sample splitting, I address one of the key challenges in applying machine learning techniques to econometric models with dependent data. In a future version of this work, I plan to extend these results to obtain general conditions for semiparametric inference after DNN estimation of nuisance components, which will allow for considerations such as more efficient estimation procedures, and instrumental variable settings.
Related papers
- Statistical Properties of Deep Neural Networks with Dependent Data [0.0]
This paper establishes statistical properties of deep neural network (DNN) estimators under dependent data.
The framework provided also offers potential for research into other DNN architectures and time-series applications.
arXiv Detail & Related papers (2024-10-14T21:46:57Z) - Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks [0.5827521884806072]
Large neural networks trained on large datasets have become the dominant paradigm in machine learning.
This thesis develops scalable methods to equip neural networks with model uncertainty.
arXiv Detail & Related papers (2024-04-29T23:38:58Z) - High-Dimensional Smoothed Entropy Estimation via Dimensionality
Reduction [14.53979700025531]
We consider the estimation of the differential entropy $h(X+Z)$ via $n$ independently and identically distributed samples of $X$.
Under the absolute-error loss, the above problem has a parametric estimation rate of $fraccDsqrtn$.
We overcome this exponential sample complexity by projecting $X$ to a low-dimensional space via principal component analysis (PCA) before the entropy estimation.
arXiv Detail & Related papers (2023-05-08T13:51:48Z) - Constraining cosmological parameters from N-body simulations with
Variational Bayesian Neural Networks [0.0]
Multiplicative normalizing flows (MNFs) are a family of approximate posteriors for the parameters of BNNs.
We have compared MNFs with respect to the standard BNNs, and the flipout estimator.
MNFs provide more realistic predictive distribution closer to the true posterior mitigating the bias introduced by the variational approximation.
arXiv Detail & Related papers (2023-01-09T16:07:48Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Integrating Random Effects in Deep Neural Networks [4.860671253873579]
We propose to use the mixed models framework to handle correlated data in deep neural networks.
By treating the effects underlying the correlation structure as random effects, mixed models are able to avoid overfitted parameter estimates.
Our approach which we call LMMNN is demonstrated to improve performance over natural competitors in various correlation scenarios.
arXiv Detail & Related papers (2022-06-07T14:02:24Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
We argue that the Gauss-Newton approximation should be understood as a local linearization of the underlying Bayesian neural network (BNN)
Because we use this linearized model for posterior inference, we should also predict using this modified model instead of the original one.
We refer to this modified predictive as "GLM predictive" and show that it effectively resolves common underfitting problems of the Laplace approximation.
arXiv Detail & Related papers (2020-08-19T12:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.