Statistical Properties of Deep Neural Networks with Dependent Data
- URL: http://arxiv.org/abs/2410.11113v2
- Date: Tue, 05 Nov 2024 18:26:53 GMT
- Title: Statistical Properties of Deep Neural Networks with Dependent Data
- Authors: Chad Brown,
- Abstract summary: This paper establishes statistical properties of deep neural network (DNN) estimators under dependent data.
The framework provided also offers potential for research into other DNN architectures and time-series applications.
- Score: 0.0
- License:
- Abstract: This paper establishes statistical properties of deep neural network (DNN) estimators under dependent data. Two general results for nonparametric sieve estimators directly applicable to DNN estimators are given. The first establishes rates for convergence in probability under nonstationary data. The second provides non-asymptotic probability bounds on $\mathcal{L}^{2}$-errors under stationary $\beta$-mixing data. I apply these results to DNN estimators in both regression and classification contexts imposing only a standard H\"older smoothness assumption. The DNN architectures considered are common in applications, featuring fully connected feedforward networks with any continuous piecewise linear activation function, unbounded weights, and a width and depth that grows with sample size. The framework provided also offers potential for research into other DNN architectures and time-series applications.
Related papers
- Inference in Partially Linear Models under Dependent Data with Deep Neural Networks [0.0]
I consider inference in a partially linear regression model under stationary $beta$-mixing data after first stage deep neural network (DNN) estimation.
By avoiding sample splitting, I address one of the key challenges in applying machine learning techniques to econometric models with dependent data.
arXiv Detail & Related papers (2024-10-29T22:29:31Z) - Scalable Subsampling Inference for Deep Neural Networks [0.0]
A non-asymptotic error bound has been developed to measure the performance of the fully connected DNN estimator.
A non-random subsampling technique--scalable subsampling--is applied to construct a subagged' DNN estimator.
The proposed confidence/prediction intervals appear to work well in finite samples.
arXiv Detail & Related papers (2024-05-14T02:11:38Z) - On Generalization Bounds for Deep Compound Gaussian Neural Networks [1.4425878137951238]
Unrolled deep neural networks (DNNs) provide better interpretability and superior empirical performance than standard DNNs.
We develop novel generalization error bounds for a class of unrolled DNNs informed by a compound Gaussian prior.
Under realistic conditions, we show that, at worst, the generalization error scales $mathcalO(nsqrt(n))$ in the signal dimension and $mathcalO(($Network Size$)3/2)$ in network size.
arXiv Detail & Related papers (2024-02-20T16:01:39Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Constraining cosmological parameters from N-body simulations with
Variational Bayesian Neural Networks [0.0]
Multiplicative normalizing flows (MNFs) are a family of approximate posteriors for the parameters of BNNs.
We have compared MNFs with respect to the standard BNNs, and the flipout estimator.
MNFs provide more realistic predictive distribution closer to the true posterior mitigating the bias introduced by the variational approximation.
arXiv Detail & Related papers (2023-01-09T16:07:48Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Integrating Random Effects in Deep Neural Networks [4.860671253873579]
We propose to use the mixed models framework to handle correlated data in deep neural networks.
By treating the effects underlying the correlation structure as random effects, mixed models are able to avoid overfitted parameter estimates.
Our approach which we call LMMNN is demonstrated to improve performance over natural competitors in various correlation scenarios.
arXiv Detail & Related papers (2022-06-07T14:02:24Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
neural network models that perfectly fit noisy data can generalize well to unseen test data.
We consider interpolating two-layer linear neural networks trained with gradient flow on the squared loss and derive bounds on the excess risk.
arXiv Detail & Related papers (2021-08-25T22:01:01Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Distribution Approximation and Statistical Estimation Guarantees of
Generative Adversarial Networks [82.61546580149427]
Generative Adversarial Networks (GANs) have achieved a great success in unsupervised learning.
This paper provides approximation and statistical guarantees of GANs for the estimation of data distributions with densities in a H"older space.
arXiv Detail & Related papers (2020-02-10T16:47:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.