論文の概要: Gaussian Derivative Change-point Detection for Early Warnings of Industrial System Failures
- arxiv url: http://arxiv.org/abs/2410.22594v1
- Date: Tue, 29 Oct 2024 23:14:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:27:07.372959
- Title: Gaussian Derivative Change-point Detection for Early Warnings of Industrial System Failures
- Title(参考訳): 産業システム故障の早期警戒のためのガウス微分変化点検出
- Authors: Hao Zhao, Rong Pan,
- Abstract要約: 将来のシステム障害の早期警告は、予測メンテナンスとシステムの可用性向上に不可欠である。
本稿では,システム故障を予測するために,システムの健全性を評価するための3段階の枠組みを提案する。
- 参考スコア(独自算出の注目度): 7.266872790554742
- License:
- Abstract: An early warning of future system failure is essential for conducting predictive maintenance and enhancing system availability. This paper introduces a three-step framework for assessing system health to predict imminent system breakdowns. First, the Gaussian Derivative Change-Point Detection (GDCPD) algorithm is proposed for detecting changes in the high-dimensional feature space. GDCPD conducts a multivariate Change-Point Detection (CPD) by implementing Gaussian derivative processes for identifying change locations on critical system features, as these changes eventually will lead to system failure. To assess the significance of these changes, Weighted Mahalanobis Distance (WMD) is applied in both offline and online analyses. In the offline setting, WMD helps establish a threshold that determines significant system variations, while in the online setting, it facilitates real-time monitoring, issuing alarms for potential future system breakdowns. Utilizing the insights gained from the GDCPD and monitoring scheme, Long Short-Term Memory (LSTM) network is then employed to estimate the Remaining Useful Life (RUL) of the system. The experimental study of a real-world system demonstrates the effectiveness of the proposed methodology in accurately forecasting system failures well before they occur. By integrating CPD with real-time monitoring and RUL prediction, this methodology significantly advances system health monitoring and early warning capabilities.
- Abstract(参考訳): 将来のシステム障害の早期警告は、予測メンテナンスとシステムの可用性向上に不可欠である。
本稿では,システム故障を予測するために,システムの健全性を評価するための3段階の枠組みを提案する。
まず,高次元特徴空間の変化を検出するために,ガウス微分変化点検出法(GDCPD)を提案する。
GDCPDは多変量変化点検出(CPD)を行い、ガウス微分プロセスを用いて重要なシステム機能上の変化位置を特定する。
重み付きマハラノビス距離(WMD:Weighted Mahalanobis Distance)は、これらの変化の意義を評価するために、オフラインとオンラインの両方に適用される。
オフライン環境では、WMDは重要なシステムの変動を決定するしきい値を確立するのに役立ち、オンライン環境では、リアルタイム監視を容易にし、将来のシステムの故障を警告する。
GDCPDとモニタリングスキームから得られた知見を利用して、Long Short-Term Memory (LSTM) ネットワークを使用して、システムのRemaining Useful Life (RUL) を推定する。
実世界のシステム実験では,システム障害の発生を正確に予測する上で,提案手法の有効性が示された。
CPDとリアルタイムモニタリングとRUL予測を統合することで、この手法はシステムのヘルスモニタリングと早期警告機能を大幅に向上させる。
関連論文リスト
- Bayesian Autoregressive Online Change-Point Detection with Time-Varying Parameters [0.8192907805418583]
現実世界のシステムにおける変化点は、システムの力学における重要な状態変化を示す。
本稿では,一変量時系列を用いたオンライン変化点検出手法を提案する。
時間的依存関係と時間的パラメータをモデル化することにより、推定精度と予測能力の両方を高めることができる。
論文 参考訳(メタデータ) (2024-07-23T10:57:13Z) - Change-Point Detection in Industrial Data Streams based on Online Dynamic Mode Decomposition with Control [5.293458740536858]
オンライン動的モード分解制御(ODMDwC)に基づく新しい変化点検出手法を提案する。
本手法は,Singular-Value-Decomposition法と比較して,直感的かつ優れた検出結果が得られることを示す。
論文 参考訳(メタデータ) (2024-07-08T14:18:33Z) - A Data Mining-Based Dynamical Anomaly Detection Method for Integrating with an Advance Metering System [0.0]
建設事業は総消費電力の30%を消費し、世界の電力関連排出量の26%に寄与している。
本研究は、メーターレベルの異常を検出するための教師なしアプローチと教師なしアプローチの両方について検討する。
このシステムは、メーターレベルの異常をリアルタイムに検出するように設計されている。
論文 参考訳(メタデータ) (2024-05-04T05:26:13Z) - Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion Detection [11.14938737864796]
多様な環境に自動的に適応できるルールベースのPIDSであるCAPTAINを提案する。
我々は、微分可能なタグ伝搬フレームワークを構築し、勾配降下アルゴリズムを用いてこれらの適応パラメータを最適化する。
その結果,CAPTAINは検出精度の向上,検出遅延の低減,ランタイムオーバーヘッドの低減,検出アラームや知識の解釈性の向上を実現している。
論文 参考訳(メタデータ) (2024-04-23T03:50:57Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
本稿では,Deformable-DETR,UP-DETR,DINOのキャリブレーション検出トランス(Cal-DETR)のメカニズムを提案する。
我々は、不確実性を利用してクラスロジットを変調する不確実性誘導ロジット変調機構を開発する。
その結果、Cal-DETRは、ドメイン内およびドメイン外の両方を校正する競合する列車時間法に対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-11-06T22:13:10Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
不確実性推定は統計的に正確な予測を提供する効果的なツールである。
本稿では,変分ニューラルネットワークを用いたTANet 3Dオブジェクト検出器を提案し,不確実性のある3Dオブジェクト検出を行う。
論文 参考訳(メタデータ) (2023-02-12T14:30:03Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
人間のループシステムにおけるモンテカルロのドロップアウトに基づく不確実性対策により,システムの透明性と性能が向上することを示す。
シミュレーション研究により、不確実性に基づく「ループ内人間システム」は、様々なレベルの人間の関与に対する性能を高めることが示されている。
論文 参考訳(メタデータ) (2020-07-14T15:47:37Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
結果として得られる決定が摂動に対して堅牢であることは、最も重要なことです。
敵対的摂動は、意図的に環境や感覚測定の修正を施したものである。
より安全なシステムの構築とデプロイには,センサーシステムの脆弱性を慎重に評価する必要がある。
論文 参考訳(メタデータ) (2020-07-14T05:25:15Z) - Monitoring and Diagnosability of Perception Systems [21.25149064251918]
知覚は、ロボット工学や自動運転車などの自律システムの高統合的応用において重要な要素である。
知覚システムの重要さにもかかわらず、システムレベルのモニタリングには正式なアプローチは存在しない。
本稿では,認識システムの実行時モニタリングと故障検出のための数学的モデルを提案する。
論文 参考訳(メタデータ) (2020-05-24T18:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。