論文の概要: CoGS: Model Agnostic Causality Constrained Counterfactual Explanations using goal-directed ASP
- arxiv url: http://arxiv.org/abs/2410.22615v1
- Date: Wed, 30 Oct 2024 00:43:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:04.142677
- Title: CoGS: Model Agnostic Causality Constrained Counterfactual Explanations using goal-directed ASP
- Title(参考訳): CoGS: 目標指向ASP.NETを使用したモデル非依存因果関係の非現実的説明
- Authors: Sopam Dasgupta, Joaquín Arias, Elmer Salazar, Gopal Gupta,
- Abstract要約: CoGSはモデルに依存しないフレームワークであり、分類モデルの反実的な説明を生成することができる。
CoGSは、望ましい結果を達成するために必要な変更について、解釈可能かつ実行可能な説明を提供する。
- 参考スコア(独自算出の注目度): 1.5749416770494706
- License:
- Abstract: Machine learning models are increasingly used in critical areas such as loan approvals and hiring, yet they often function as black boxes, obscuring their decision-making processes. Transparency is crucial, as individuals need explanations to understand decisions, primarily if the decisions result in an undesired outcome. Our work introduces CoGS (Counterfactual Generation with s(CASP)), a model-agnostic framework capable of generating counterfactual explanations for classification models. CoGS leverages the goal-directed Answer Set Programming system s(CASP) to compute realistic and causally consistent modifications to feature values, accounting for causal dependencies between them. By using rule-based machine learning algorithms (RBML), notably the FOLD-SE algorithm, CoGS extracts the underlying logic of a statistical model to generate counterfactual solutions. By tracing a step-by-step path from an undesired outcome to a desired one, CoGS offers interpretable and actionable explanations of the changes required to achieve the desired outcome. We present details of the CoGS framework along with its evaluation.
- Abstract(参考訳): 機械学習モデルは、ローンの承認や雇用といった重要な領域でますます使われていますが、ブラックボックスとして機能し、意思決定プロセスが無視されます。
透明性は、個人が意思決定を理解するために説明を必要とするため、決定が望ましくない結果をもたらす場合、非常に重要である。
本研究は,分類モデルに対する反現実的説明を生成可能なモデルに依存しないフレームワークであるCoGS(Counterfactual Generation with s(CASP))を紹介する。
CoGSはゴール指向のAnswer Set Programming System s(CASP)を活用し、特徴値に対する現実的で因果一貫性のある修正を計算し、それら間の因果依存性を考慮に入れている。
ルールベースの機械学習アルゴリズム(RBML)、特にFOLD-SEアルゴリズムを使用することで、CoGSは統計モデルの基盤となる論理を抽出し、反現実解を生成する。
望ましくない結果から望ましい結果へのステップバイステップパスをトレースすることで、CoGSは、望ましい結果を達成するために必要な変更の解釈可能かつ実行可能な説明を提供する。
本稿では,CoGSフレームワークの詳細と評価について述べる。
関連論文リスト
- Self-Healing Machine Learning: A Framework for Autonomous Adaptation in Real-World Environments [50.310636905746975]
実世界の機械学習システムは、基礎となるデータ生成プロセスの分散シフトによって、モデルの性能劣化に遭遇することが多い。
概念のドリフト適応のような既存のシフトへのアプローチは、その理性に依存しない性質によって制限される。
我々はこれらの制限を克服するために自己修復機械学習(SHML)を提案する。
論文 参考訳(メタデータ) (2024-10-31T20:05:51Z) - CoGS: Causality Constrained Counterfactual Explanations using goal-directed ASP [1.5749416770494706]
本稿では,ルールベース機械学習モデルから対物生成を行うCoGS(Counterfactual Generation with s(CASP))フレームワークを提案する。
CoGSは、それらの間の因果依存性を考慮した属性値に対する現実的かつ因果一貫性のある変更を計算します。
望ましくない結果から、偽物を使用する望ましい結果への道を見つける。
論文 参考訳(メタデータ) (2024-07-11T04:50:51Z) - CFGs: Causality Constrained Counterfactual Explanations using goal-directed ASP [1.5749416770494706]
本稿では,CFG(CounterFactual Generation with s(CASP)を提案する。このフレームワークは,目標指向のAnswer Set Programming(ASP)システムs(CASP)を利用して,デファクトな説明を自動的に生成する。
CFGがこれらの世界、すなわち、望ましくない結果を得る最初の状態から、望まれる決定を得る想像された目標状態へどのようにナビゲートするかを示す。
論文 参考訳(メタデータ) (2024-05-24T21:47:58Z) - Value-Distributional Model-Based Reinforcement Learning [59.758009422067]
政策の長期的業績に関する不確実性の定量化は、シーケンシャルな意思決定タスクを解決するために重要である。
モデルに基づくベイズ強化学習の観点から問題を考察する。
本稿では,値分布関数を学習するモデルに基づくアルゴリズムであるEpicemic Quantile-Regression(EQR)を提案する。
論文 参考訳(メタデータ) (2023-08-12T14:59:19Z) - ReCOGS: How Incidental Details of a Logical Form Overshadow an
Evaluation of Semantic Interpretation [63.33465936588327]
合成一般化ベンチマークCOGSの修正版を提案する。
本結果は,構成一般化とベンチマークタスク設計の重要性を再確認するものである。
論文 参考訳(メタデータ) (2023-03-24T00:01:24Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
本稿では,ニューラルモデルによる反事実文の評価について検討する。
まず、神経因果モデル(NCM)が十分に表現可能であることを示す。
第2に,反事実分布の同時同定と推定を行うアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-09-30T18:29:09Z) - Adaptive Fine-Grained Predicates Learning for Scene Graph Generation [122.4588401267544]
一般的なシーングラフ生成(SGG)モデルは、頭部の述語を予測する傾向があり、再バランス戦略は尾のカテゴリを好む。
本稿では,SGGの難解な述語を識別することを目的とした適応的微粒述語学習(FGPL-A)を提案する。
提案したモデル非依存戦略は,VG-SGGおよびGQA-SGGデータセットのベンチマークモデルの性能を最大175%,Mean Recall@100では76%向上させ,新たな最先端性能を実現する。
論文 参考訳(メタデータ) (2022-07-11T03:37:57Z) - Towards Dynamic Consistency Checking in Goal-directed Predicate Answer
Set Programming [2.3204178451683264]
本稿では,動的一貫性チェック(Dynamic Consistency check)と呼ばれるトップダウン評価戦略のバリエーションを示す。
これにより、リテラルがプログラムのグローバルな制約に関連する否定と互換性がないかどうかを判断できる。
我々は、標準バージョンのs(CASP)の最大90倍のスピードアップを実験的に観察した。
論文 参考訳(メタデータ) (2021-10-22T20:38:48Z) - CARE: Coherent Actionable Recourse based on Sound Counterfactual
Explanations [0.0]
本稿では,モデルおよびユーザレベルのデシダータに対処するモジュール型説明フレームワークであるCAREを紹介する。
モデルに依存しないアプローチとして、CAREはブラックボックスモデルに対して複数の多様な説明を生成する。
論文 参考訳(メタデータ) (2021-08-18T15:26:59Z) - Interpretable Learning-to-Rank with Generalized Additive Models [78.42800966500374]
ラーニング・ツー・ランクのモデルの解釈可能性は、非常に重要でありながら、比較的過小評価されている研究分野である。
解釈可能なランキングモデルの最近の進歩は、主に既存のブラックボックスランキングモデルに対するポストホックな説明の生成に焦点を当てている。
一般化加法モデル(GAM)をランキングタスクに導入することにより,本質的に解釈可能な学習 to ランクの基盤を築いた。
論文 参考訳(メタデータ) (2020-05-06T01:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。