論文の概要: Is Function Similarity Over-Engineered? Building a Benchmark
- arxiv url: http://arxiv.org/abs/2410.22677v1
- Date: Wed, 30 Oct 2024 03:59:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:07.044365
- Title: Is Function Similarity Over-Engineered? Building a Benchmark
- Title(参考訳): 関数の類似性はオーバーエンジニアリングされているか?ベンチマークを構築する
- Authors: Rebecca Saul, Chang Liu, Noah Fleischmann, Richard Zak, Kristopher Micinski, Edward Raff, James Holt,
- Abstract要約: 我々は、現実世界のユースケースをよりよく反映した高品質なデータセットとテストからなるバイナリ関数類似性検出のための新しいベンチマークを構築します。
我々のベンチマークでは、関数の生のバイトだけを見て、分解やその他の前処理を必要としない新しい単純なベースラインが、複数の設定で最先端のパフォーマンスを達成できることが判明した。
- 参考スコア(独自算出の注目度): 37.33020176141435
- License:
- Abstract: Binary analysis is a core component of many critical security tasks, including reverse engineering, malware analysis, and vulnerability detection. Manual analysis is often time-consuming, but identifying commonly-used or previously-seen functions can reduce the time it takes to understand a new file. However, given the complexity of assembly, and the NP-hard nature of determining function equivalence, this task is extremely difficult. Common approaches often use sophisticated disassembly and decompilation tools, graph analysis, and other expensive pre-processing steps to perform function similarity searches over some corpus. In this work, we identify a number of discrepancies between the current research environment and the underlying application need. To remedy this, we build a new benchmark, REFuSE-Bench, for binary function similarity detection consisting of high-quality datasets and tests that better reflect real-world use cases. In doing so, we address issues like data duplication and accurate labeling, experiment with real malware, and perform the first serious evaluation of ML binary function similarity models on Windows data. Our benchmark reveals that a new, simple basline, one which looks at only the raw bytes of a function, and requires no disassembly or other pre-processing, is able to achieve state-of-the-art performance in multiple settings. Our findings challenge conventional assumptions that complex models with highly-engineered features are being used to their full potential, and demonstrate that simpler approaches can provide significant value.
- Abstract(参考訳): バイナリ分析は、リバースエンジニアリング、マルウェア分析、脆弱性検出など、多くの重要なセキュリティタスクの中核となるコンポーネントである。
手動分析は時間を要することが多いが、一般的に使われている関数や以前見てきた関数を識別することで、新しいファイルを理解するのに要する時間を短縮することができる。
しかし、組立の複雑さと関数同値性を決定するNPハードの性質を考えると、この課題は非常に難しい。
一般的なアプローチでは、洗練された分解・分解ツール、グラフ解析、その他の高価な前処理ステップを使用して、いくつかのコーパス上で関数類似性検索を行う。
本研究では,現在の研究環境とアプリケーションニーズの相違点を明らかにした。
これを改善するために、私たちは、現実世界のユースケースをよりよく反映した高品質なデータセットとテストからなるバイナリ関数類似性検出のための、REFuSE-Benchという新しいベンチマークを構築しました。
これにより、データの重複や正確なラベル付けといった問題に対処し、実際のマルウェアを実験し、Windowsデータ上でMLバイナリ関数類似性モデルの最初の真剣な評価を行う。
我々のベンチマークでは、関数の生のバイトだけを見て、分解やその他の前処理を必要としない新しい単純なベースラインが、複数の設定で最先端のパフォーマンスを達成できることが判明した。
本研究は,高度に設計された特徴を持つ複雑なモデルがその潜在能力を最大限に活用しているという従来の仮定に挑戦し,より単純なアプローチが大きな価値をもたらすことを実証する。
関連論文リスト
- Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
バイナリコード類似度検出(BCSD)は、脆弱性検出、マルウェア分析、コードの再利用識別など、多くの分野で重要な役割を果たしている。
本稿では,LLVM-IRと高レベルのセマンティック抽象化を利用して,コンパイル差を緩和するIRBinDiffを提案する。
IRBinDiffは1対1の比較と1対多の検索シナリオにおいて,他の主要なBCSD手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-24T09:09:20Z) - BinSimDB: Benchmark Dataset Construction for Fine-Grained Binary Code Similarity Analysis [6.093226756571566]
我々は、BinSimDBと呼ばれる細粒度のバイナリコード類似性解析のためのベンチマークデータセットを構築した。
具体的には,2つのバイナリコードスニペット間の相違を補うためのBMergeアルゴリズムとBPairアルゴリズムを提案する。
実験の結果、BinSimDBはバイナリコード類似性比較の性能を大幅に改善することが示された。
論文 参考訳(メタデータ) (2024-10-14T05:13:48Z) - FASER: Binary Code Similarity Search through the use of Intermediate
Representations [0.8594140167290099]
クロスアーキテクチャバイナリコード類似性検索は、多くの研究で研究されている。
本稿では,Function as a String Encoded Representation (FASER)を提案する。
論文 参考訳(メタデータ) (2023-10-05T15:36:35Z) - UniASM: Binary Code Similarity Detection without Fine-tuning [0.8271859911016718]
バイナリ関数の表現を学習するために,UniASMと呼ばれるトランスフォーマーベースのバイナリコード埋め込みモデルを提案する。
既知の脆弱性検索の現実的なタスクでは、UniASMは現在のベースラインをすべて上回っている。
論文 参考訳(メタデータ) (2022-10-28T14:04:57Z) - Reliable Shot Identification for Complex Event Detection via
Visual-Semantic Embedding [72.9370352430965]
本稿では,映像中の事象検出のための視覚的意味的誘導損失法を提案する。
カリキュラム学習に動機付け,高い信頼性の事例で分類器の訓練を開始するために,負の弾性正規化項を導入する。
提案する非ネット正規化問題の解法として,代替最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-12T11:46:56Z) - Comparative Code Structure Analysis using Deep Learning for Performance
Prediction [18.226950022938954]
本稿では,アプリケーションの静的情報(抽象構文木やASTなど)を用いてコード構造の変化に基づいて性能変化を予測することの実現可能性を評価することを目的とする。
組込み学習手法の評価により,木系長短メモリ(LSTM)モデルでは,ソースコードの階層構造を利用して遅延表現を発見し,最大84%(個人的問題)と73%(複数の問題を含む組み合わせデータセット)の精度で性能変化を予測できることが示された。
論文 参考訳(メタデータ) (2021-02-12T16:59:12Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
我々は,様々なタスクを解くことを目的とした回帰関数の集合を適合させることで,マルチタスク学習と呼ばれる問題を考える。
我々の新しい定式化では、これらの関数のパラメータを2つに分けて、互いに近づきながらタスク固有のドメインで学習する。
これにより、異なるドメインにまたがって収集されたデータが、互いのタスクにおける学習パフォーマンスを改善するのに役立つ、クロス・ファーティライズが促進される。
論文 参考訳(メタデータ) (2020-10-24T21:35:57Z) - Frustratingly Simple Few-Shot Object Detection [98.42824677627581]
希少なクラスにおける既存検出器の最後の層のみを微調整することは、数発の物体検出タスクに不可欠である。
このような単純なアプローチは、現在のベンチマークで約220ポイントのメタ学習方法より優れている。
論文 参考訳(メタデータ) (2020-03-16T00:29:14Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
局所的な特徴とロバストな推定アルゴリズムの包括的なベンチマークを導入する。
パイプラインのモジュール構造は、さまざまなメソッドの容易な統合、構成、組み合わせを可能にします。
適切な設定で、古典的な解決策は依然として芸術の知覚された状態を上回る可能性があることを示す。
論文 参考訳(メタデータ) (2020-03-03T15:20:57Z) - Machine Learning to Tackle the Challenges of Transient and Soft Errors
in Complex Circuits [0.16311150636417257]
機械学習モデルは、回路インスタンスの完全なリストに対して、インスタンスごとの正確な関数デレートデータを予測するために使用される。
提案手法を実例に適用し,各種機械学習モデルの評価と比較を行った。
論文 参考訳(メタデータ) (2020-02-18T18:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。