論文の概要: Improving Uncertainty Quantification in Large Language Models via Semantic Embeddings
- arxiv url: http://arxiv.org/abs/2410.22685v1
- Date: Wed, 30 Oct 2024 04:41:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:29:17.001086
- Title: Improving Uncertainty Quantification in Large Language Models via Semantic Embeddings
- Title(参考訳): 意味的埋め込みによる大規模言語モデルの不確実性定量化の改善
- Authors: Yashvir S. Grewal, Edwin V. Bonilla, Thang D. Bui,
- Abstract要約: 大規模言語モデル(LLM)における正確な不確実性の定量化は、信頼性の高いデプロイメントに不可欠である。
LLMにおける意味的不確実性を測定するための現在の最先端手法は、厳密な双方向の包含基準に依存している。
本研究では,意味的不確実性のよりスムーズでロバストな推定を実現するためにセマンティックな埋め込みを利用する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 11.33157177182775
- License:
- Abstract: Accurately quantifying uncertainty in large language models (LLMs) is crucial for their reliable deployment, especially in high-stakes applications. Current state-of-the-art methods for measuring semantic uncertainty in LLMs rely on strict bidirectional entailment criteria between multiple generated responses and also depend on sequence likelihoods. While effective, these approaches often overestimate uncertainty due to their sensitivity to minor wording differences, additional correct information, and non-important words in the sequence. We propose a novel approach that leverages semantic embeddings to achieve smoother and more robust estimation of semantic uncertainty in LLMs. By capturing semantic similarities without depending on sequence likelihoods, our method inherently reduces any biases introduced by irrelevant words in the answers. Furthermore, we introduce an amortised version of our approach by explicitly modelling semantics as latent variables in a joint probabilistic model. This allows for uncertainty estimation in the embedding space with a single forward pass, significantly reducing computational overhead compared to existing multi-pass methods. Experiments across multiple question-answering datasets and frontier LLMs demonstrate that our embedding-based methods provide more accurate and nuanced uncertainty quantification than traditional approaches.
- Abstract(参考訳): 大規模言語モデル(LLM)における不確かさの正確な定量化は、信頼性の高いデプロイメント、特に高いスループットのアプリケーションにおいて重要である。
LLMにおける意味的不確実性を測定するための現在の最先端手法は、複数の生成した応答間の厳密な双方向の包含基準に依存し、シーケンスの確率にも依存する。
効果はあるものの、これらのアプローチは、マイナーな単語の差、追加の正しい情報、シーケンス内の重要でない単語に対する感受性のために、しばしば不確実性を過大評価する。
本研究では,LLMにおける意味的不確実性のよりスムーズでロバストな推定を実現するために,意味的埋め込みを利用する新しい手法を提案する。
シーケンスの確率に依存することなくセマンティックな類似性を捉えることにより、本手法は、応答における無関係な単語によってもたらされるバイアスを本質的に低減する。
さらに,共同確率モデルにおける潜在変数としてのセマンティクスを明示的にモデル化することで,提案手法の償却版を導入する。
これにより、単一の前方通過を持つ埋め込み空間における不確実性の推定が可能となり、既存のマルチパス法と比較して計算オーバーヘッドが大幅に削減される。
複数の質問応答データセットとフロンティアLCMをまたいだ実験により、我々の埋め込みベースの手法は従来の手法よりも正確でニュアンスのある不確実性定量化を提供することを示した。
関連論文リスト
- Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
大規模言語モデル(LLM)の不確実性は、安全性と信頼性が重要であるアプリケーションには不可欠である。
ホワイトボックスとブラックボックス LLM における不確実性評価手法である Kernel Language Entropy (KLE) を提案する。
論文 参考訳(メタデータ) (2024-05-30T12:42:05Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - Semantic Density: Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space [14.715989394285238]
既存のLarge Language Models (LLM) には、ユーザが生成するレスポンスごとに不確実性/信頼度を計測するための固有の機能がない。
本稿では,これらの課題に対処する新しい枠組みを提案する。
意味密度は、意味空間における確率分布の観点から各応答の不確かさ/自信情報を抽出する。
論文 参考訳(メタデータ) (2024-05-22T17:13:49Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - Combining Confidence Elicitation and Sample-based Methods for
Uncertainty Quantification in Misinformation Mitigation [6.929834518749884]
誤情報緩和に対処する主要な候補として、大規模言語モデルが登場している。
既存のアプローチは幻覚や過信的な予測に苦しむ。
本稿では, 直接信頼誘導法とサンプルベース整合性法の両方を活用する不確実性定量化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T16:36:58Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。