論文の概要: SCRREAM : SCan, Register, REnder And Map:A Framework for Annotating Accurate and Dense 3D Indoor Scenes with a Benchmark
- arxiv url: http://arxiv.org/abs/2410.22715v1
- Date: Wed, 30 Oct 2024 05:53:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:27:43.764319
- Title: SCRREAM : SCan, Register, REnder And Map:A Framework for Annotating Accurate and Dense 3D Indoor Scenes with a Benchmark
- Title(参考訳): SCRREAM : SCan, Register, Render, Map:A Framework for Annotating Accurate and Dense 3D Indoor Scenes with a Benchmark
- Authors: HyunJun Jung, Weihang Li, Shun-Cheng Wu, William Bittner, Nikolas Brasch, Jifei Song, Eduardo Pérez-Pellitero, Zhensong Zhang, Arthur Moreau, Nassir Navab, Benjamin Busam,
- Abstract要約: SCRREAMは、シーン内のオブジェクトの完全な高密度メッシュのアノテーションを可能にし、実際の画像シーケンスにカメラのポーズを登録する。
データセットのアノテーションパイプラインの詳細を示し、可能なデータセットの4つのバリエーションを示す。
最近の屋内再建とSLAMのためのパイプラインは、新しいベンチマークとして機能している。
- 参考スコア(独自算出の注目度): 43.88114765730359
- License:
- Abstract: Traditionally, 3d indoor datasets have generally prioritized scale over ground-truth accuracy in order to obtain improved generalization. However, using these datasets to evaluate dense geometry tasks, such as depth rendering, can be problematic as the meshes of the dataset are often incomplete and may produce wrong ground truth to evaluate the details. In this paper, we propose SCRREAM, a dataset annotation framework that allows annotation of fully dense meshes of objects in the scene and registers camera poses on the real image sequence, which can produce accurate ground truth for both sparse 3D as well as dense 3D tasks. We show the details of the dataset annotation pipeline and showcase four possible variants of datasets that can be obtained from our framework with example scenes, such as indoor reconstruction and SLAM, scene editing & object removal, human reconstruction and 6d pose estimation. Recent pipelines for indoor reconstruction and SLAM serve as new benchmarks. In contrast to previous indoor dataset, our design allows to evaluate dense geometry tasks on eleven sample scenes against accurately rendered ground truth depth maps.
- Abstract(参考訳): 伝統的に、3次元屋内データセットは、一般的に、改良された一般化を得るために、地道精度よりもスケールを優先している。
しかし、深度レンダリングのような密度の高い幾何学的タスクを評価するためにこれらのデータセットを使用することは、データセットのメッシュはしばしば不完全であり、詳細を評価するために間違った根拠真理を生成するため、問題となる可能性がある。
本稿では,SCRREAMを提案する。SCRREAMは,シーン内のオブジェクトの完全に密集したメッシュのアノテーションを許容し,実際の画像列にカメラポーズを登録し,スパース3Dと密集3Dタスクの両方に対して正確な基底真理を生成できるデータセットアノテーションフレームワークである。
提案するデータセット・アノテーション・パイプラインの詳細を示すとともに,屋内再構成やSLAM,シーン編集・オブジェクト除去,人体再構成,6dポーズ推定など,フレームワークから得られる可能性のある4種類のデータセットを提示する。
最近の屋内再建とSLAMのためのパイプラインは、新しいベンチマークとして機能している。
従来の屋内データセットとは対照的に,我々の設計では,11のサンプルシーンにおける高密度な幾何学的タスクを,精密に描画された地上の真理深度マップに対して評価することができる。
関連論文リスト
- SS3DM: Benchmarking Street-View Surface Reconstruction with a Synthetic 3D Mesh Dataset [25.962746964527224]
ストリートビューシナリオのための正確な3D表面の再構築は、デジタルエンターテイメントや自動運転といったアプリケーションにとって不可欠である。
CARLAシミュレータからエクスポートしたtextbfSynthetic textbfStreet-view textbf3D textbfMeshモデルからなるSS3DMデータセットを提案する。
6台のRGBカメラと5台のLiDARセンサーを搭載した車両を、多様な屋外シーンで仮想的に駆動する。
論文 参考訳(メタデータ) (2024-10-29T04:54:45Z) - Towards Localizing Structural Elements: Merging Geometrical Detection with Semantic Verification in RGB-D Data [0.0]
本稿では, 壁面や地表面などの構造成分を局所化するための実時間パイプラインについて, 純三次元平面検出のための幾何計算を統合した。
並列なマルチスレッドアーキテクチャを持ち、環境中で検出されたすべての平面のポーズと方程式を正確に推定し、汎視的セグメンテーション検証を用いて地図構造を形成するものをフィルタリングし、検証された構成部品のみを保持する。
また、検出されたコンポーネントを統一された3次元シーングラフに(再)関連付けることで、幾何学的精度と意味的理解のギャップを埋めることもできる。
論文 参考訳(メタデータ) (2024-09-10T16:28:09Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
我々は、余分なデータやアノテーションを必要とせずに、幾何学保存深度を予測するためにモデルを訓練する学習フレームワークを提案する。
包括的な実験は、我々のフレームワークの優れた一般化能力を強調します。
我々の革新的な損失関数は、ドメイン固有のスケール・アンド・シフト係数を自律的に復元するモデルを可能にします。
論文 参考訳(メタデータ) (2023-09-18T12:36:39Z) - V-DETR: DETR with Vertex Relative Position Encoding for 3D Object
Detection [73.37781484123536]
DETRフレームワークを用いた点雲のための高性能な3次元物体検出器を提案する。
限界に対処するため,新しい3次元相対位置(3DV-RPE)法を提案する。
挑戦的なScanNetV2ベンチマークで例外的な結果を示す。
論文 参考訳(メタデータ) (2023-08-08T17:14:14Z) - The Drunkard's Odometry: Estimating Camera Motion in Deforming Scenes [79.00228778543553]
このデータセットは、3Dシーンの中で地上の真実を語る最初の大規模なカメラ軌道である。
リアルな3Dビルディングのシミュレーションでは、膨大な量のデータと地上の真実のラベルが得られます。
本稿では,光学的フロー推定を剛体カメラ運動に分解するDrunkard's Odometryと呼ばれる,変形可能な新しいオドメトリー法を提案する。
論文 参考訳(メタデータ) (2023-06-29T13:09:31Z) - BS3D: Building-scale 3D Reconstruction from RGB-D Images [25.604775584883413]
本稿では,消費者向け深度カメラを用いた大規模3次元再構築のための使い易いフレームワークを提案する。
複雑で高価な買収設定とは異なり、当社のシステムはクラウドソーシングを可能にする。
論文 参考訳(メタデータ) (2023-01-03T11:46:14Z) - HM3D-ABO: A Photo-realistic Dataset for Object-centric Multi-view 3D
Reconstruction [37.29140654256627]
本稿では、フォトリアリスティックなオブジェクト中心データセットHM3D-ABOを提案する。
リアルな屋内シーンとリアルなオブジェクトを構成することで構築される。
このデータセットは、カメラポーズ推定やノベルビュー合成といったタスクにも有用である。
論文 参考訳(メタデータ) (2022-06-24T16:02:01Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
有望な解決策は、CADオブジェクトモデルで構成される合成データセットをよりよく利用して、実際のデータセットでの学習を促進することである。
最近の3次元事前学習の研究は、合成物体から他の実世界の応用へ学習した伝達特性が失敗することを示している。
本研究では,この目的を達成するためにRandomRoomsという新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:56:12Z) - SCFusion: Real-time Incremental Scene Reconstruction with Semantic
Completion [86.77318031029404]
本研究では,シーン再構成とセマンティックシーン補完を段階的かつリアルタイムに共同で行うフレームワークを提案する。
我々のフレームワークは、3Dグローバルモデルでセマンティックコンプリートを正確かつ効率的に融合させるために、占有マップを処理し、ボクセル状態を活用するように設計された新しいニューラルアーキテクチャに依存している。
論文 参考訳(メタデータ) (2020-10-26T15:31:52Z) - Towards General Purpose Geometry-Preserving Single-View Depth Estimation [1.9573380763700712]
単視点深度推定(SVDE)は、ARアプリケーション、3Dモデリング、ロボット工学におけるシーン理解において重要な役割を果たす。
近年の研究では、成功するソリューションはトレーニングデータの多様性とボリュームに強く依存していることが示されている。
我々の研究は、従来のデータセットとともに、このデータに基づいてトレーニングされたモデルが、正確なシーン形状を予測しながら精度を向上できることを示している。
論文 参考訳(メタデータ) (2020-09-25T20:06:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。