Beyond Ontology in Dialogue State Tracking for Goal-Oriented Chatbot
- URL: http://arxiv.org/abs/2410.22767v1
- Date: Wed, 30 Oct 2024 07:36:23 GMT
- Title: Beyond Ontology in Dialogue State Tracking for Goal-Oriented Chatbot
- Authors: Sejin Lee, Dongha Kim, Min Song,
- Abstract summary: We propose a novel approach to enhance Dialogue State Tracking (DST) performance.
Our method enables Large Language Model (LLM) to infer dialogue states through carefully designed prompts.
Our approach achieved state-of-the-art with a JGA of 42.57%, and performed well in open-domain real-world conversations.
- Score: 3.2288892242158984
- License:
- Abstract: Goal-oriented chatbots are essential for automating user tasks, such as booking flights or making restaurant reservations. A key component of these systems is Dialogue State Tracking (DST), which interprets user intent and maintains the dialogue state. However, existing DST methods often rely on fixed ontologies and manually compiled slot values, limiting their adaptability to open-domain dialogues. We propose a novel approach that leverages instruction tuning and advanced prompt strategies to enhance DST performance, without relying on any predefined ontologies. Our method enables Large Language Model (LLM) to infer dialogue states through carefully designed prompts and includes an anti-hallucination mechanism to ensure accurate tracking in diverse conversation contexts. Additionally, we employ a Variational Graph Auto-Encoder (VGAE) to model and predict subsequent user intent. Our approach achieved state-of-the-art with a JGA of 42.57% outperforming existing ontology-less DST models, and performed well in open-domain real-world conversations. This work presents a significant advancement in creating more adaptive and accurate goal-oriented chatbots.
Related papers
- TOD-Flow: Modeling the Structure of Task-Oriented Dialogues [77.15457469745364]
We propose a novel approach focusing on inferring the TOD-Flow graph from dialogue data annotated with dialog acts.
The inferred TOD-Flow graph can be easily integrated with any dialogue model to improve its prediction performance, transparency, and controllability.
arXiv Detail & Related papers (2023-12-07T20:06:23Z) - Semantic Parsing by Large Language Models for Intricate Updating
Strategies of Zero-Shot Dialogue State Tracking [25.286077416235784]
Zero-shot Dialogue State Tracking (DST) addresses the challenge of acquiring and annotating task-oriented dialogues.
We propose ParsingDST, a new In-Context Learning (ICL) method, to introduce additional intricate updating strategies in zero-shot DST.
Our approach reformulates the DST task by leveraging powerful Large Language Models (LLMs) and translating the original dialogue text to semantic parsing.
arXiv Detail & Related papers (2023-10-16T15:38:02Z) - Stabilized In-Context Learning with Pre-trained Language Models for Few
Shot Dialogue State Tracking [57.92608483099916]
Large pre-trained language models (PLMs) have shown impressive unaided performance across many NLP tasks.
For more complex tasks such as dialogue state tracking (DST), designing prompts that reliably convey the desired intent is nontrivial.
We introduce a saliency model to limit dialogue text length, allowing us to include more exemplars per query.
arXiv Detail & Related papers (2023-02-12T15:05:10Z) - DiSTRICT: Dialogue State Tracking with Retriever Driven In-Context
Tuning [7.5700317050237365]
We propose DiSTRICT, a generalizable in-context tuning approach for Dialogue State Tracking (DST)
DSTRICT retrieves highly relevant training examples for a given dialogue to fine-tune the model without any hand-crafted templates.
Experiments with the MultiWOZ benchmark datasets show that DiSTRICT outperforms existing approaches in various zero-shot and few-shot settings.
arXiv Detail & Related papers (2022-12-06T09:40:15Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
We introduce GODEL, a large pre-trained language model for dialog.
We show that GODEL outperforms state-of-the-art pre-trained dialog models in few-shot fine-tuning setups.
A novel feature of our evaluation methodology is the introduction of a notion of utility that assesses the usefulness of responses.
arXiv Detail & Related papers (2022-06-22T18:19:32Z) - Prompt Learning for Few-Shot Dialogue State Tracking [75.50701890035154]
This paper focuses on how to learn a dialogue state tracking (DST) model efficiently with limited labeled data.
We design a prompt learning framework for few-shot DST, which consists of two main components: value-based prompt and inverse prompt mechanism.
Experiments show that our model can generate unseen slots and outperforms existing state-of-the-art few-shot methods.
arXiv Detail & Related papers (2022-01-15T07:37:33Z) - A Simple But Effective Approach to n-shot Task-Oriented Dialogue
Augmentation [32.43362825854633]
We introduce a framework that creates synthetic task-oriented dialogues in a fully automatic manner.
Our framework uses the simple idea that each turn-pair in a task-oriented dialogue has a certain function.
We observe significant improvements in the fine-tuning scenarios in several domains.
arXiv Detail & Related papers (2021-02-27T18:55:12Z) - Attention Guided Dialogue State Tracking with Sparse Supervision [5.758073912084366]
In call centers, for tasks like managing bookings or subscriptions, the user goal can be associated with actions issued by customer service agents.
These action logs are available in large volumes and can be utilized for learning dialogue states.
We extend a state-of-the-art encoder-decoder model to efficiently learn Dialogue State Tracking (DST) with sparse labels.
arXiv Detail & Related papers (2021-01-28T12:18:39Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling.
To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling.
arXiv Detail & Related papers (2020-04-15T04:09:05Z) - Non-Autoregressive Dialog State Tracking [122.2328875457225]
We propose a novel framework of Non-Autoregressive Dialog State Tracking (NADST)
NADST can factor in potential dependencies among domains and slots to optimize the models towards better prediction of dialogue states as a complete set rather than separate slots.
Our results show that our model achieves the state-of-the-art joint accuracy across all domains on the MultiWOZ 2.1 corpus.
arXiv Detail & Related papers (2020-02-19T06:39:26Z) - Domain-Aware Dialogue State Tracker for Multi-Domain Dialogue Systems [2.3859169601259347]
In task-oriented dialogue systems the dialogue state tracker (DST) component is responsible for predicting the state of the dialogue based on the dialogue history.
We propose a domain-aware dialogue state tracker that is completely data-driven and it is modeled to predict for dynamic service schemas.
arXiv Detail & Related papers (2020-01-21T13:41:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.