論文の概要: Adaptive Paradigm Synergy: Can a Cross-Paradigm Objective Enhance Long-Tailed Learning?
- arxiv url: http://arxiv.org/abs/2410.22883v1
- Date: Wed, 30 Oct 2024 10:25:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:39.269033
- Title: Adaptive Paradigm Synergy: Can a Cross-Paradigm Objective Enhance Long-Tailed Learning?
- Title(参考訳): Adaptive Paradigm Synergy: クロスパラダイムなオブジェクト指向学習は長期学習を促進するか?
- Authors: Haowen Xiao, Guanghui Liu, Xinyi Gao, Yang Li, Fengmao Lv, Jielei Chu,
- Abstract要約: 自己教師付き学習(SSL)は、教師付き手法に対抗して、いくつかのコンピュータビジョンタスクで印象的な成果を上げている。
しかし、その性能は、固有のクラス不均衡を捉えるのが困難であるため、長い尾の分布を持つ現実世界のデータセットに低下する。
両パラダイムの強みを統一しようとするパラダイム横断目標であるアダプティブ・パラダイム・シナジー(APS)を紹介する。
- 参考スコア(独自算出の注目度): 16.110763554788445
- License:
- Abstract: Self-supervised learning (SSL) has achieved impressive results across several computer vision tasks, even rivaling supervised methods. However, its performance degrades on real-world datasets with long-tailed distributions due to difficulties in capturing inherent class imbalances. Although supervised long-tailed learning offers significant insights, the absence of labels in SSL prevents direct transfer of these strategies.To bridge this gap, we introduce Adaptive Paradigm Synergy (APS), a cross-paradigm objective that seeks to unify the strengths of both paradigms. Our approach reexamines contrastive learning from a spatial structure perspective, dynamically adjusting the uniformity of latent space structure through adaptive temperature tuning. Furthermore, we draw on a re-weighting strategy from supervised learning to compensate for the shortcomings of temperature adjustment in explicit quantity perception.Extensive experiments on commonly used long-tailed datasets demonstrate that APS improves performance effectively and efficiently. Our findings reveal the potential for deeper integration between supervised and self-supervised learning, paving the way for robust models that handle real-world class imbalance.
- Abstract(参考訳): 自己教師付き学習(SSL)は、教師付き手法に対抗して、いくつかのコンピュータビジョンタスクで印象的な成果を上げている。
しかし、その性能は、固有のクラス不均衡を捉えるのが困難であるため、長い尾の分布を持つ現実世界のデータセットに低下する。
このギャップを埋めるために,両パラダイムの強みを統一しようとするパラダイム横断的目標であるAdaptive Paradigm Synergy(APS)を導入する。
提案手法は空間構造の観点からのコントラスト学習を再検討し,適応温度調整による潜在空間構造の均一性を動的に調整する。
さらに,有意な量知覚における温度調整の欠点を補うために,教師付き学習から再重み付け戦略を導いた。
本研究は,教師付き学習と自己教師型学習のより深い統合の可能性を明らかにし,実世界のクラス不均衡を扱う頑健なモデルへの道を開くものである。
関連論文リスト
- What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
大規模なデータ不均衡は、Webスケールの視覚言語データセットの間に自然に存在する。
事前学習したCLIPは、教師付き学習と比較してデータ不均衡に顕著な堅牢性を示す。
CLIPの堅牢性と差別性は、より記述的な言語監督、より大きなデータスケール、より広いオープンワールドの概念によって改善される。
論文 参考訳(メタデータ) (2024-05-31T17:57:24Z) - Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification [3.0398616939692777]
対人学習、コントラスト学習、拡散認知学習、通常の再構成学習といった技術が標準となっている。
この研究は、ニューラルネットワークの学習プロセスを強化するために、事前学習技術と微調整戦略の利点を解明することを目的としている。
論文 参考訳(メタデータ) (2024-05-29T15:44:51Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
本稿では,フェデレート学習におけるデータ不均一性の課題に対処する,新しいコントラスト学習フレームワークを提案する。
当社のフレームワークは,既存のフェデレート学習アプローチを,標準ベンチマークにおいて大きなマージンで上回ります。
論文 参考訳(メタデータ) (2024-01-10T04:55:24Z) - Dynamic Sub-graph Distillation for Robust Semi-supervised Continual
Learning [52.046037471678005]
半教師付き連続学習(SSCL)に焦点をあて、そのモデルが未知のカテゴリを持つ部分ラベル付きデータから徐々に学習する。
半教師付き連続学習のための動的サブグラフ蒸留法(DSGD)を提案する。
論文 参考訳(メタデータ) (2023-12-27T04:40:12Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context Learning (ICL) は、近年の大規模言語モデル(LLM)の進歩により、効率的なアプローチとなっている。
しかし、両方のパラダイムは、過信の批判的な問題(すなわち、誤校正)に苦しむ傾向にある。
論文 参考訳(メタデータ) (2023-12-21T11:55:10Z) - L-DAWA: Layer-wise Divergence Aware Weight Aggregation in Federated
Self-Supervised Visual Representation Learning [14.888569402903562]
自己教師付き学習(SSL)とフェデレーション付き学習(FL)をひとつのコヒーレントシステムに統合することは、データプライバシの保証を提供する可能性がある。
本稿では,FLアグリゲーションにおけるクライアントバイアスや分散の影響を軽減するため,レイヤワイド・ディバージェンス・アウェア・ウェイト・アグリゲーション(L-DAWA)と呼ばれる新たなアグリゲーション戦略を提案する。
論文 参考訳(メタデータ) (2023-07-14T15:07:30Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
本稿では,トランスファーラーニングとマルチタスクラーニングの原則に基づく正規化アプローチである同時学習を紹介する。
我々は、ターゲットデータセットであるUFOP-HVDの補助データセットを活用し、カスタマイズされた損失関数でガイドされた同時分類を容易にする。
興味深いことに,本手法は正規化のないモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T19:44:57Z) - ArCL: Enhancing Contrastive Learning with Augmentation-Robust
Representations [30.745749133759304]
我々は,自己教師付きコントラスト学習の伝達可能性を分析する理論的枠組みを開発する。
対照的な学習は、その伝達可能性を制限するような、ドメイン不変の機能を学ぶのに失敗することを示す。
これらの理論的知見に基づき、Augmentation-robust Contrastive Learning (ArCL) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-02T09:26:20Z) - On Higher Adversarial Susceptibility of Contrastive Self-Supervised
Learning [104.00264962878956]
コントラスト型自己教師学習(CSL)は,画像と映像の分類において,教師あり学習のパフォーマンスに適合するか上回っている。
2つの学習パラダイムによって誘導される表現の性質が似ているかどうかは、いまだに不明である。
我々は,CSL表現空間における単位超球面上のデータ表現の均一分布を,この現象の鍵となる要因として同定する。
CSLトレーニングでモデルロバスト性を改善するのにシンプルだが有効である戦略を考案する。
論文 参考訳(メタデータ) (2022-07-22T03:49:50Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
本研究では,既存のMPAシステムを改善するための潜在的手法として,コントラスト学習について検討する。
畳み込みニューラルネットワークに適用された回帰タスクに適した重み付きコントラスト損失を導入する。
この結果から,MPA回帰タスクにおいて,コントラッシブ・ベースの手法がSoTA性能に適合し,超越できることが示唆された。
論文 参考訳(メタデータ) (2021-08-03T19:24:25Z) - Hierarchically Decoupled Spatial-Temporal Contrast for Self-supervised
Video Representation Learning [6.523119805288132]
a) 学習対象を2つの対照的なサブタスクに分解し、空間的特徴と時間的特徴を強調し、(b) 階層的にそれを実行し、マルチスケールな理解を促進する。
論文 参考訳(メタデータ) (2020-11-23T08:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。