From Babble to Words: Pre-Training Language Models on Continuous Streams of Phonemes
- URL: http://arxiv.org/abs/2410.22906v1
- Date: Wed, 30 Oct 2024 11:05:01 GMT
- Title: From Babble to Words: Pre-Training Language Models on Continuous Streams of Phonemes
- Authors: Zébulon Goriely, Richard Diehl Martinez, Andrew Caines, Lisa Beinborn, Paula Buttery,
- Abstract summary: We develop a pipeline to convert text datasets into a continuous stream of phonemes.
We apply this pipeline to the 100-million-word pre-training dataset from the BabyLM challenge.
Our results show that while phoneme-based training slightly reduces performance on traditional language understanding tasks, it offers valuable analytical and practical benefits.
- Score: 6.726629754291751
- License:
- Abstract: Language models are typically trained on large corpora of text in their default orthographic form. However, this is not the only option; representing data as streams of phonemes can offer unique advantages, from deeper insights into phonological language acquisition to improved performance on sound-based tasks. The challenge lies in evaluating the impact of phoneme-based training, as most benchmarks are also orthographic. To address this, we develop a pipeline to convert text datasets into a continuous stream of phonemes. We apply this pipeline to the 100-million-word pre-training dataset from the BabyLM challenge, as well as to standard language and grammatical benchmarks, enabling us to pre-train and evaluate a model using phonemic input representations. Our results show that while phoneme-based training slightly reduces performance on traditional language understanding tasks, it offers valuable analytical and practical benefits.
Related papers
- Few-Shot Spoken Language Understanding via Joint Speech-Text Models [18.193191170754744]
Recent work on speech representation models jointly pre-trained with text has demonstrated the potential of improving speech representations.
We leverage such shared representations to address the persistent challenge of limited data availability in spoken language understanding tasks.
By employing a pre-trained speech-text model, we find that models fine-tuned on text can be effectively transferred to speech testing data.
arXiv Detail & Related papers (2023-10-09T17:59:21Z) - Direct Speech-to-speech Translation without Textual Annotation using
Bottleneck Features [13.44542301438426]
We propose a direct speech-to-speech translation model which can be trained without any textual annotation or content information.
Experiments on Mandarin-Cantonese speech translation demonstrate the feasibility of the proposed approach.
arXiv Detail & Related papers (2022-12-12T10:03:10Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - A study on the efficacy of model pre-training in developing neural
text-to-speech system [55.947807261757056]
This study aims to understand better why and how model pre-training can positively contribute to TTS system performance.
It is found that the TTS system could achieve comparable performance when the pre-training data is reduced to 1/8 of its original size.
arXiv Detail & Related papers (2021-10-08T02:09:28Z) - Direct speech-to-speech translation with discrete units [64.19830539866072]
We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation.
We propose to predict the self-supervised discrete representations learned from an unlabeled speech corpus instead.
When target text transcripts are available, we design a multitask learning framework with joint speech and text training that enables the model to generate dual mode output (speech and text) simultaneously in the same inference pass.
arXiv Detail & Related papers (2021-07-12T17:40:43Z) - Pre-Training a Language Model Without Human Language [74.11825654535895]
We study how the intrinsic nature of pre-training data contributes to the fine-tuned downstream performance.
We find that models pre-trained on unstructured data beat those trained directly from scratch on downstream tasks.
To our great astonishment, we uncover that pre-training on certain non-human language data gives GLUE performance close to performance pre-trained on another non-English language.
arXiv Detail & Related papers (2020-12-22T13:38:06Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - Learning Spoken Language Representations with Neural Lattice Language
Modeling [39.50831917042577]
We propose a framework that trains neural lattice language models to provide contextualized representations for spoken language understanding tasks.
The proposed two-stage pre-training approach reduces the demands of speech data and has better efficiency.
arXiv Detail & Related papers (2020-07-06T10:38:03Z) - Multilingual Jointly Trained Acoustic and Written Word Embeddings [22.63696520064212]
We extend this idea to multiple low-resource languages.
We jointly train an AWE model and an AGWE model, using phonetically transcribed data from multiple languages.
The pre-trained models can then be used for unseen zero-resource languages, or fine-tuned on data from low-resource languages.
arXiv Detail & Related papers (2020-06-24T19:16:02Z) - Towards Zero-shot Learning for Automatic Phonemic Transcription [82.9910512414173]
A more challenging problem is to build phonemic transcribers for languages with zero training data.
Our model is able to recognize unseen phonemes in the target language without any training data.
It achieves 7.7% better phoneme error rate on average over a standard multilingual model.
arXiv Detail & Related papers (2020-02-26T20:38:42Z) - Phoneme Boundary Detection using Learnable Segmental Features [31.203969460341817]
Phoneme boundary detection plays an essential first step for a variety of speech processing applications.
We propose a neural architecture coupled with a parameterized structured loss function to learn segmental representations for the task of phoneme boundary detection.
arXiv Detail & Related papers (2020-02-11T14:03:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.