Dual-Optimized Adaptive Graph Reconstruction for Multi-View Graph Clustering
- URL: http://arxiv.org/abs/2410.22983v1
- Date: Wed, 30 Oct 2024 12:50:21 GMT
- Title: Dual-Optimized Adaptive Graph Reconstruction for Multi-View Graph Clustering
- Authors: Zichen Wen, Tianyi Wu, Yazhou Ren, Yawen Ling, Chenhang Cui, Xiaorong Pu, Lifang He,
- Abstract summary: We propose a novel multi-view graph clustering method based on dual-optimized adaptive graph reconstruction, named DOAGC.
It mainly aims to reconstruct the graph structure adapted to traditional GNNs to deal with heterophilous graph issues while maintaining the advantages of traditional GNNs.
- Score: 19.419832637206138
- License:
- Abstract: Multi-view clustering is an important machine learning task for multi-media data, encompassing various domains such as images, videos, and texts. Moreover, with the growing abundance of graph data, the significance of multi-view graph clustering (MVGC) has become evident. Most existing methods focus on graph neural networks (GNNs) to extract information from both graph structure and feature data to learn distinguishable node representations. However, traditional GNNs are designed with the assumption of homophilous graphs, making them unsuitable for widely prevalent heterophilous graphs. Several techniques have been introduced to enhance GNNs for heterophilous graphs. While these methods partially mitigate the heterophilous graph issue, they often neglect the advantages of traditional GNNs, such as their simplicity, interpretability, and efficiency. In this paper, we propose a novel multi-view graph clustering method based on dual-optimized adaptive graph reconstruction, named DOAGC. It mainly aims to reconstruct the graph structure adapted to traditional GNNs to deal with heterophilous graph issues while maintaining the advantages of traditional GNNs. Specifically, we first develop an adaptive graph reconstruction mechanism that accounts for node correlation and original structural information. To further optimize the reconstruction graph, we design a dual optimization strategy and demonstrate the feasibility of our optimization strategy through mutual information theory. Numerous experiments demonstrate that DOAGC effectively mitigates the heterophilous graph problem.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Self-supervision meets kernel graph neural models: From architecture to
augmentations [36.388069423383286]
We improve the design and learning of kernel graph neural networks (KGNNs)
We develop a novel structure-preserving graph data augmentation method called latent graph augmentation (LGA)
Our proposed model achieves competitive performance comparable to or sometimes outperforming state-of-the-art graph representation learning frameworks.
arXiv Detail & Related papers (2023-10-17T14:04:22Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
Graph-based semi-supervised learning (GSSL) has long been a hot research topic.
graph convolutional networks (GCNs) have become the predominant techniques for their promising performance.
arXiv Detail & Related papers (2023-09-24T10:10:21Z) - Edge Directionality Improves Learning on Heterophilic Graphs [42.5099159786891]
We introduce Directed Graph Neural Network (Dir-GNN), a novel framework for deep learning on directed graphs.
Dir-GNN can be used to extend any Message Passing Neural Network (MPNN) to account for edge directionality information.
We prove that Dir-GNN matches the expressivity of the Directed Weisfeiler-Lehman test, exceeding that of conventional MPNNs.
arXiv Detail & Related papers (2023-05-17T18:06:43Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Make Heterophily Graphs Better Fit GNN: A Graph Rewiring Approach [43.41163711340362]
We propose a method named Deep Heterophily Graph Rewiring (DHGR) to rewire graphs by adding homophilic edges and pruning heterophilic edges.
To the best of our knowledge, it is the first work studying graph rewiring for heterophily graphs.
arXiv Detail & Related papers (2022-09-17T06:55:21Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
We introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming.
This mechanism enables G-Zoom to explore and extract self-supervision signals from a graph from multiple scales.
We have conducted extensive experiments on real-world datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.
arXiv Detail & Related papers (2021-11-20T22:45:53Z) - Directed Graph Convolutional Network [15.879411956536885]
We extend spectral-based graph convolution to directed graphs by using first- and second-order proximity.
A new GCN model, called DGCN, is then designed to learn representations on the directed graph.
arXiv Detail & Related papers (2020-04-29T06:19:10Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.