From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited
- URL: http://arxiv.org/abs/2309.13599v2
- Date: Sun, 2 Jun 2024 18:01:11 GMT
- Title: From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited
- Authors: Zheng Wang, Hongming Ding, Li Pan, Jianhua Li, Zhiguo Gong, Philip S. Yu,
- Abstract summary: Graph-based semi-supervised learning (GSSL) has long been a hot research topic.
graph convolutional networks (GCNs) have become the predominant techniques for their promising performance.
- Score: 51.24526202984846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based semi-supervised learning (GSSL) has long been a hot research topic. Traditional methods are generally shallow learners, based on the cluster assumption. Recently, graph convolutional networks (GCNs) have become the predominant techniques for their promising performance. In this paper, we theoretically discuss the relationship between these two types of methods in a unified optimization framework. One of the most intriguing findings is that, unlike traditional ones, typical GCNs may not jointly consider the graph structure and label information at each layer. Motivated by this, we further propose three simple but powerful graph convolution methods. The first is a supervised method OGC which guides the graph convolution process with labels. The others are two unsupervised methods: GGC and its multi-scale version GGCM, both aiming to preserve the graph structure information during the convolution process. Finally, we conduct extensive experiments to show the effectiveness of our methods.
Related papers
- Dual-Optimized Adaptive Graph Reconstruction for Multi-View Graph Clustering [19.419832637206138]
We propose a novel multi-view graph clustering method based on dual-optimized adaptive graph reconstruction, named DOAGC.
It mainly aims to reconstruct the graph structure adapted to traditional GNNs to deal with heterophilous graph issues while maintaining the advantages of traditional GNNs.
arXiv Detail & Related papers (2024-10-30T12:50:21Z) - GC4NC: A Benchmark Framework for Graph Condensation on Node Classification with New Insights [30.796414860754837]
Graph condensation (GC) is an emerging technique designed to learn a significantly smaller graph that retains the essential information of the original graph.
This paper introduces textbfGC4NC, a comprehensive framework for evaluating diverse GC methods on node classification.
Our systematic evaluation offers novel insights into how condensed graphs behave and the critical design choices that drive their success.
arXiv Detail & Related papers (2024-06-24T15:17:49Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Multi-view Contrastive Graph Clustering [12.463334005083379]
We propose a generic framework to cluster multi-view attributed graph data.
Inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method.
Our simple approach outperforms existing deep learning-based methods.
arXiv Detail & Related papers (2021-10-22T15:22:42Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
This paper proposes a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN)
KE-GCN combines the power of Graph Convolutional Network (GCN) in graph-based belief propagation and the strengths of advanced knowledge embedding methods.
Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases.
arXiv Detail & Related papers (2020-06-12T17:12:51Z) - K-Core based Temporal Graph Convolutional Network for Dynamic Graphs [19.237377882738063]
We propose a novel k-core based temporal graph convolutional network, the CTGCN, to learn node representations for dynamic graphs.
In contrast to previous dynamic graph embedding methods, CTGCN can preserve both local connective proximity and global structural similarity.
Experimental results on 7 real-world graphs demonstrate that the CTGCN outperforms existing state-of-the-art graph embedding methods in several tasks.
arXiv Detail & Related papers (2020-03-22T14:15:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.