論文の概要: A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service Robotics
- arxiv url: http://arxiv.org/abs/2410.22997v1
- Date: Wed, 30 Oct 2024 13:22:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:26:51.855512
- Title: A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service Robotics
- Title(参考訳): サービスロボティクスにおけるタスク計画と実行のためのプロンプト技術の比較
- Authors: Jonas Bode, Bastian Pätzold, Raphael Memmesheimer, Sven Behnke,
- Abstract要約: glsplLLMの最近の進歩は、自律ロボット制御と人間とロボットの相互作用において重要な役割を果たしている。
サービスにおける高レベルのタスク計画と実行の適用において、迅速なエンジニアリング技術とそれらの組み合わせを比較した。
そこで本研究では,タスクの多様なセットとシミュレーションにおける機能セットを定義し,タスク完了の正確さと実行時間を測定する。
- 参考スコア(独自算出の注目度): 16.064583670720587
- License:
- Abstract: Recent advances in LLM have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason across a wide range of tasks and scenarios. Previous works have investigated various prompt engineering techniques for improving the performance of \glspl{LLM} to accomplish tasks, while others have proposed methods that utilize LLMs to plan and execute tasks based on the available functionalities of a given robot platform. In this work, we consider both lines of research by comparing prompt engineering techniques and combinations thereof within the application of high-level task planning and execution in service robotics. We define a diverse set of tasks and a simple set of functionalities in simulation, and measure task completion accuracy and execution time for several state-of-the-art models.
- Abstract(参考訳): LLMの最近の進歩は、多岐にわたるタスクやシナリオの理解と推論のために、その膨大な一般的な知識と能力を活用することで、自律ロボット制御と人間とロボットの相互作用に役立っている。
従来の研究では,課題達成のための \glspl{LLM} の性能向上のために,様々な迅速な工学的手法が検討されてきたが,一方,あるロボットプラットフォームで利用可能な機能に基づいて,LLMを用いてタスクを計画・実行する手法も提案されている。
本研究では,サービスロボティクスにおける高レベルのタスク計画と実行の適用において,迅速な工学的手法とそれらの組み合わせを比較することにより,両研究の行を考察する。
そこで本研究では,タスクの多様なセットとシミュレーションにおける機能セットを定義し,タスク完了の正確さと実行時間を測定する。
関連論文リスト
- COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENTは、異種マルチロボットシステムの協調のための新しいLCMベースのタスク計画フレームワークである。
提案-実行-フィードバック-調整機構は,個々のロボットに対して動作を分解・割り当てするように設計されている。
実験の結果,我々の研究は,成功率と実行効率の面で,従来の手法をはるかに上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-09-23T15:53:41Z) - Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model [6.9268843428933025]
大規模言語モデル(LLM)は、意味情報の理解と処理のための強力な計画と推論能力を示している。
本稿では,ロボットが与えられたテキストによる指示の下で,自律的に動作や低レベル実行を計画できる新しい言語モデルベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-15T17:33:32Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - TPTU: Large Language Model-based AI Agents for Task Planning and Tool
Usage [28.554981886052953]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションのための強力なツールとして登場した。
LLMの本質的な生成能力は、その長所にもかかわらず、複雑なタスクを扱うには不十分である。
本稿では,LLMベースのAIエージェントに適した構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-07T09:22:03Z) - LEMMA: Learning Language-Conditioned Multi-Robot Manipulation [21.75163634731677]
LanguagE-Conditioned Multi-robot Manipulation (LEMMA)
LeMMAは、手続き的に生成されるタスクが8種類あり、複雑さは様々である。
それぞれのタスクに対して,800の専門的なデモンストレーションと,トレーニングと評価のためのヒューマンインストラクションを提供します。
論文 参考訳(メタデータ) (2023-08-02T04:37:07Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Actは、ロボット操作タスクのシーケンシャルアクションにマルチモーダル命令をマッピングするフレームワークである。
我々のアプローチは、様々な命令のモダリティや入力タイプを調節する上で、調整可能で柔軟なものである。
我々のゼロショット法は、いくつかのタスクにおいて、最先端の学習ベースのポリシーよりも優れていた。
論文 参考訳(メタデータ) (2023-05-18T17:59:49Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
本稿では,タスクのシーケンシング,割り当て,実行を最適化するタスクと動作計画の組み合わせを提案する。
このフレームワークはタスクとアクションの分離に依存しており、アクションはシンボル的タスクの幾何学的実現の可能な1つの可能性である。
ロボットアームと人間の作業員がモザイクを組み立てる共同製造シナリオにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-03-27T01:50:45Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。