RSNet: A Light Framework for The Detection of Multi-scale Remote Sensing Targets
- URL: http://arxiv.org/abs/2410.23073v3
- Date: Sun, 10 Nov 2024 02:31:09 GMT
- Title: RSNet: A Light Framework for The Detection of Multi-scale Remote Sensing Targets
- Authors: Hongyu Chen, Chengcheng Chen, Fei Wang, Yuhu Shi, Weiming Zeng,
- Abstract summary: RSNet is a lightweight framework to enhance ship detection in SAR imagery.
Waveletpool-ContextGuided (WCG) is the backbone, guiding global context understanding.
Waveletpool-StarFusion (WSF) is introduced as the neck, employing a residual wavelet element-wise multiplication structure.
- Score: 10.748210940033484
- License:
- Abstract: Recent advancements in synthetic aperture radar (SAR) ship detection using deep learning have significantly improved accuracy and speed, yet effectively detecting small objects in complex backgrounds with fewer parameters remains a challenge. This letter introduces RSNet, a lightweight framework constructed to enhance ship detection in SAR imagery. To ensure accuracy with fewer parameters, we proposed Waveletpool-ContextGuided (WCG) as its backbone, guiding global context understanding through multi-scale wavelet features for effective detection in complex scenes. Additionally, Waveletpool-StarFusion (WSF) is introduced as the neck, employing a residual wavelet element-wise multiplication structure to achieve higher dimensional nonlinear features without increasing network width. The Lightweight-Shared (LS) module is designed as detect components to achieve efficient detection through lightweight shared convolutional structure and multi-format compatibility. Experiments on the SAR Ship Detection Dataset (SSDD) and High-Resolution SAR Image Dataset (HRSID) demonstrate that RSNet achieves a strong balance between lightweight design and detection performance, surpassing many state-of-the-art detectors, reaching 72.5\% and 67.6\% in \textbf{\(\mathbf{mAP_{.50:.95}}\) }respectively with 1.49M parameters. Our code will be released soon.
Related papers
- Multitask Learning for SAR Ship Detection with Gaussian-Mask Joint Segmentation [20.540873039361102]
This paper proposes a multitask learning framework for SAR ship detection, consisting of object detection, speckle suppression, and target segmentation tasks.
An angle classification loss with aspect ratio weighting is introduced to improve detection accuracy by addressing angular periodicity and object proportions.
The speckle suppression task uses a dual-feature fusion attention mechanism to reduce noise and fuse shallow and denoising features, enhancing robustness.
The target segmentation task, leveraging a rotated Gaussian-mask, aids the network in extracting target regions from cluttered backgrounds and improves detection efficiency with pixel-level predictions.
arXiv Detail & Related papers (2024-11-21T05:10:41Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
We design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction.
Renormalized connection (RC) on the KDN enables synergistic focusing'' of multi-scale features.
RCs extend the multi-level feature's divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks.
arXiv Detail & Related papers (2024-09-09T13:56:22Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
Experimental results on three SAR datasets demonstrate that our WBANet significantly outperforms contemporary state-of-the-art methods.
Our WBANet achieves 98.33%, 96.65%, and 96.62% of percentage of correct classification (PCC) on the respective datasets.
arXiv Detail & Related papers (2024-07-18T04:36:10Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - Lightweight Salient Object Detection in Optical Remote-Sensing Images
via Semantic Matching and Edge Alignment [61.45639694373033]
We propose a novel lightweight network for optical remote sensing images (ORSI-SOD) based on semantic matching and edge alignment, termed SeaNet.
Specifically, SeaNet includes a lightweight MobileNet-V2 for feature extraction, a dynamic semantic matching module (DSMM) for high-level features, and a portable decoder for inference.
arXiv Detail & Related papers (2023-01-07T04:33:51Z) - DPNet: Dual-Path Network for Real-time Object Detection with Lightweight
Attention [15.360769793764526]
This paper presents a dual-path network, named DPNet, with a lightweight attention scheme for real-time object detection.
DPNet achieves state-of-the-art trade-off between detection accuracy and implementation efficiency.
arXiv Detail & Related papers (2022-09-28T09:11:01Z) - SAR-ShipNet: SAR-Ship Detection Neural Network via Bidirectional
Coordinate Attention and Multi-resolution Feature Fusion [7.323279438948967]
This paper studies a practically meaningful ship detection problem from synthetic aperture radar (SAR) images by the neural network.
We propose a SAR-ship detection neural network (call SAR-ShipNet for short), by newly developing Bidirectional Coordinate Attention (BCA) and Multi-resolution Feature Fusion (MRF) based on CenterNet.
Experimental results on the public SAR-Ship dataset show that our SAR-ShipNet achieves competitive advantages in both speed and accuracy.
arXiv Detail & Related papers (2022-03-29T12:27:04Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
Shape deformation of targets in SAR image due to random orientation and partial information loss is an essential challenge in SAR ship detection.
We propose a data augmentation method to train a deep network that is robust to partial information loss within the targets.
arXiv Detail & Related papers (2022-02-14T07:01:01Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - GEM: Glare or Gloom, I Can Still See You -- End-to-End Multimodal Object
Detector [11.161639542268015]
We propose sensor-aware multi-modal fusion strategies for 2D object detection in harsh-lighting conditions.
Our network learns to estimate the measurement reliability of each sensor modality in the form of scalar weights and masks.
We show that the proposed strategies out-perform the existing state-of-the-art methods on the FLIR-Thermal dataset.
arXiv Detail & Related papers (2021-02-24T14:56:37Z) - A Light-Weight Object Detection Framework with FPA Module for Optical
Remote Sensing Imagery [12.762588615997624]
We propose an efficient anchor free object detector, CenterFPANet.
To pursue speed, we use a lightweight backbone and introduce the asymmetric revolution block.
This strategy can improve the accuracy of remote sensing image object detection without reducing the detection speed.
arXiv Detail & Related papers (2020-09-07T12:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.