Multitask Learning for SAR Ship Detection with Gaussian-Mask Joint Segmentation
- URL: http://arxiv.org/abs/2411.13847v1
- Date: Thu, 21 Nov 2024 05:10:41 GMT
- Title: Multitask Learning for SAR Ship Detection with Gaussian-Mask Joint Segmentation
- Authors: Ming Zhao, Xin Zhang, André Kaup,
- Abstract summary: This paper proposes a multitask learning framework for SAR ship detection, consisting of object detection, speckle suppression, and target segmentation tasks.
An angle classification loss with aspect ratio weighting is introduced to improve detection accuracy by addressing angular periodicity and object proportions.
The speckle suppression task uses a dual-feature fusion attention mechanism to reduce noise and fuse shallow and denoising features, enhancing robustness.
The target segmentation task, leveraging a rotated Gaussian-mask, aids the network in extracting target regions from cluttered backgrounds and improves detection efficiency with pixel-level predictions.
- Score: 20.540873039361102
- License:
- Abstract: Detecting ships in synthetic aperture radar (SAR) images is challenging due to strong speckle noise, complex surroundings, and varying scales. This paper proposes MLDet, a multitask learning framework for SAR ship detection, consisting of object detection, speckle suppression, and target segmentation tasks. An angle classification loss with aspect ratio weighting is introduced to improve detection accuracy by addressing angular periodicity and object proportions. The speckle suppression task uses a dual-feature fusion attention mechanism to reduce noise and fuse shallow and denoising features, enhancing robustness. The target segmentation task, leveraging a rotated Gaussian-mask, aids the network in extracting target regions from cluttered backgrounds and improves detection efficiency with pixel-level predictions. The Gaussian-mask ensures ship centers have the highest probabilities, gradually decreasing outward under a Gaussian distribution. Additionally, a weighted rotated boxes fusion (WRBF) strategy combines multi-direction anchor predictions, filtering anchors beyond boundaries or with high overlap but low confidence. Extensive experiments on SSDD+ and HRSID datasets demonstrate the effectiveness and superiority of MLDet.
Related papers
- RSNet: A Light Framework for The Detection of Multi-scale Remote Sensing Targets [10.748210940033484]
RSNet is a lightweight framework to enhance ship detection in SAR imagery.
Waveletpool-ContextGuided (WCG) is the backbone, guiding global context understanding.
Waveletpool-StarFusion (WSF) is introduced as the neck, employing a residual wavelet element-wise multiplication structure.
arXiv Detail & Related papers (2024-10-30T14:46:35Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
We design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction.
Renormalized connection (RC) on the KDN enables synergistic focusing'' of multi-scale features.
RCs extend the multi-level feature's divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks.
arXiv Detail & Related papers (2024-09-09T13:56:22Z) - A Real-time Faint Space Debris Detector With Learning-based LCM [4.454216126942097]
This paper proposes a method for low-SNR streak extraction based on local contrast and maximum likelihood estimation (MLE)
The algorithm in this paper is of high speed and precision, which guarantees its promising applications in the extraction of high dynamic targets.
arXiv Detail & Related papers (2023-09-15T08:37:28Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - SAR-ShipNet: SAR-Ship Detection Neural Network via Bidirectional
Coordinate Attention and Multi-resolution Feature Fusion [7.323279438948967]
This paper studies a practically meaningful ship detection problem from synthetic aperture radar (SAR) images by the neural network.
We propose a SAR-ship detection neural network (call SAR-ShipNet for short), by newly developing Bidirectional Coordinate Attention (BCA) and Multi-resolution Feature Fusion (MRF) based on CenterNet.
Experimental results on the public SAR-Ship dataset show that our SAR-ShipNet achieves competitive advantages in both speed and accuracy.
arXiv Detail & Related papers (2022-03-29T12:27:04Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
Shape deformation of targets in SAR image due to random orientation and partial information loss is an essential challenge in SAR ship detection.
We propose a data augmentation method to train a deep network that is robust to partial information loss within the targets.
arXiv Detail & Related papers (2022-02-14T07:01:01Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Learning Efficient Representations for Enhanced Object Detection on
Large-scene SAR Images [16.602738933183865]
It is a challenging problem to detect and recognize targets on complex large-scene Synthetic Aperture Radar (SAR) images.
Recently developed deep learning algorithms can automatically learn the intrinsic features of SAR images.
We propose an efficient and robust deep learning based target detection method.
arXiv Detail & Related papers (2022-01-22T03:25:24Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
We propose an arbitrary-oriented region proposal network (AO-RPN) to generate oriented proposals transformed from horizontal anchors.
To obtain accurate bounding boxes, we decouple the detection task into multiple subtasks and propose a multi-head network.
Each head is specially designed to learn the features optimal for the corresponding task, which allows our network to detect objects accurately.
arXiv Detail & Related papers (2020-12-24T06:36:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.