HiBO: Hierarchical Bayesian Optimization via Adaptive Search Space Partitioning
- URL: http://arxiv.org/abs/2410.23148v3
- Date: Fri, 22 Nov 2024 16:18:55 GMT
- Title: HiBO: Hierarchical Bayesian Optimization via Adaptive Search Space Partitioning
- Authors: Wenxuan Li, Taiyi Wang, Eiko Yoneki,
- Abstract summary: HiBO is a novel hierarchical algorithm integrating global-level search space partitioning information into the acquisition strategy of a local BO-based.
A set of evaluations demonstrates that HiBO outperforms state-of-the-art methods in high-dimensional synthetic benchmarks.
- Score: 0.7737746260673106
- License:
- Abstract: Optimizing black-box functions in high-dimensional search spaces has been known to be challenging for traditional Bayesian Optimization (BO). In this paper, we introduce HiBO, a novel hierarchical algorithm integrating global-level search space partitioning information into the acquisition strategy of a local BO-based optimizer. HiBO employs a search-tree-based global-level navigator to adaptively split the search space into partitions with different sampling potential. The local optimizer then utilizes this global-level information to guide its acquisition strategy towards most promising regions within the search space. A comprehensive set of evaluations demonstrates that HiBO outperforms state-of-the-art methods in high-dimensional synthetic benchmarks and presents significant practical effectiveness in the real-world task of tuning configurations of database management systems (DBMSs).
Related papers
- Localized Zeroth-Order Prompt Optimization [54.964765668688806]
We propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO)
ZOPO incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization.
Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency.
arXiv Detail & Related papers (2024-03-05T14:18:15Z) - High-dimensional Bayesian Optimization via Covariance Matrix Adaptation
Strategy [16.521207412129833]
We propose a novel technique for defining the local regions using the Covariance Matrix Adaptation (CMA) strategy.
Based on this search distribution, we then define the local regions consisting of data points with high probabilities of being the global optimum.
Our approach serves as a meta-algorithm as it can incorporate existing black-box BOs, such as BO, TuRBO, and BAxUS, to find the global optimum.
arXiv Detail & Related papers (2024-02-05T15:32:10Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - Sparse Bayesian Optimization [16.867375370457438]
We present several regularization-based approaches that allow us to discover sparse and more interpretable configurations.
We propose a novel differentiable relaxation based on homotopy continuation that makes it possible to target sparsity.
We show that we are able to efficiently optimize for sparsity.
arXiv Detail & Related papers (2022-03-03T18:25:33Z) - Local Latent Space Bayesian Optimization over Structured Inputs [23.173329381303887]
We propose LOL-BO, which adapts the notion of trust regions explored in recent work on high-dimensional Bayesian optimization to the structured setting.
LOL-BO achieves as much as 20 times improvement over state-of-the-art latent space Bayesian optimization methods across six real-world benchmarks.
arXiv Detail & Related papers (2022-01-28T00:55:58Z) - Fighting the curse of dimensionality: A machine learning approach to
finding global optima [77.34726150561087]
This paper shows how to find global optima in structural optimization problems.
By exploiting certain cost functions we either obtain the global at best or obtain superior results at worst when compared to established optimization procedures.
arXiv Detail & Related papers (2021-10-28T09:50:29Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaM outperforms existing path planning methods in 2D navigation tasks, especially in the presence of difficult-to-escape local optima.
These gains transfer to highly multimodal real-world tasks, where we outperform strong baselines in compiler phase ordering by up to 245% and in molecular design by up to 0.4 on properties on a 0-1 scale.
arXiv Detail & Related papers (2021-06-19T18:06:11Z) - Good practices for Bayesian Optimization of high dimensional structured
spaces [15.488642552157131]
We study the effect of different search space design choices for performing Bayesian Optimization in high dimensional structured datasets.
We evaluate new methods to automatically define the optimization bounds in the latent space.
We provide recommendations for the practitioners.
arXiv Detail & Related papers (2020-12-31T07:00:39Z) - Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search
Spaces [63.22864716473051]
We propose a novel BO algorithm which expands (and shifts) the search space over iterations.
We show theoretically that for both our algorithms, the cumulative regret grows at sub-linear rates.
arXiv Detail & Related papers (2020-09-05T14:24:40Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
A globally accurate model is not required to achieve good performance in many common control applications.
We propose an active learning strategy for Gaussian process state space models that aims to obtain an accurate model on a bounded subset of the state-action space.
By employing model predictive control, the proposed technique integrates information collected during exploration and adaptively improves its exploration strategy.
arXiv Detail & Related papers (2020-05-04T05:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.