Relative volume of comparable pairs under semigroup majorization
- URL: http://arxiv.org/abs/2410.23196v1
- Date: Wed, 30 Oct 2024 16:48:59 GMT
- Title: Relative volume of comparable pairs under semigroup majorization
- Authors: Fabio Deelan Cunden, Jakub Czartowski, Giovanni Gramegna, A. de Oliveira Junior,
- Abstract summary: We review recent results and conjectures in the case of emphmajorization relation.
We prove new exact finite-$n$ results in the case of emphUT-majorization relation.
- Score: 0.0
- License:
- Abstract: Any semigroup $\mathcal{S}$ of stochastic matrices induces a semigroup majorization relation $\prec^{\mathcal{S}}$ on the set $\Delta_{n-1}$ of probability $n$-vectors. Pick $X,Y$ at random in $\Delta_{n-1}$: what is the probability that $X$ and $Y$ are comparable under $\prec^{\mathcal{S}}$? We review recent asymptotic ($n\to\infty$) results and conjectures in the case of \emph{majorization} relation (when $\mathcal{S}$ is the set of bistochastic matrices), discuss natural generalisations, and prove new exact finite-$n$ results in the case of \emph{UT-majorization} relation, i.e.,\ when $\mathcal{S}$ is the set of upper-triangular stochastic matrices.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - Fitting an ellipsoid to a quadratic number of random points [10.208117253395342]
We consider the problem $(mathrmP)$ of fitting $n$ standard Gaussian random vectors in $mathbbRd$ to the boundary of a centered ellipsoid, as $n, d to infty$.
This problem is conjectured to have a sharp feasibility transition: for any $varepsilon > 0$, if $n leq (1 - varepsilon) d2 / 4$ then $(mathrmP)$ has a solution with high probability.
arXiv Detail & Related papers (2023-07-03T17:46:23Z) - Learning linear dynamical systems under convex constraints [4.4351901934764975]
We consider the problem of identification of linear dynamical systems from $T$ samples of a single trajectory.
$A*$ can be reliably estimated for values $T$ smaller than what is needed for unconstrained setting.
arXiv Detail & Related papers (2023-03-27T11:49:40Z) - A random matrix model for random approximate $t$-designs [1.534667887016089]
A random matrix model is proposed to describe the probability distribution of $delta(nu_mathcalS,t)$ for any $t$.
We show that our model satisfies the so-called spectral gap conjecture, i.e. we prove that with the probability $1$ there is $tinmathbbZ_+$ such that $sup satisfieskinmathbbZ_+delta(k)=delta(t)$.
arXiv Detail & Related papers (2022-10-14T14:50:06Z) - Matrix concentration inequalities and efficiency of random universal
sets of quantum gates [0.0]
For a random set $mathcalS subset U(d)$ of quantum gates we provide bounds on the probability that $mathcalS$ forms a $delta$-approximate $t$-design.
We show that for $mathcalS$ drawn from an exact $t$-design the probability that it forms a $delta$-approximate $t$-design satisfies the inequality $mathbbPleft(delta geq x right)leq 2D_t
arXiv Detail & Related papers (2022-02-10T23:44:09Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Sparse sketches with small inversion bias [79.77110958547695]
Inversion bias arises when averaging estimates of quantities that depend on the inverse covariance.
We develop a framework for analyzing inversion bias, based on our proposed concept of an $(epsilon,delta)$-unbiased estimator for random matrices.
We show that when the sketching matrix $S$ is dense and has i.i.d. sub-gaussian entries, the estimator $(epsilon,delta)$-unbiased for $(Atop A)-1$ with a sketch of size $m=O(d+sqrt d/
arXiv Detail & Related papers (2020-11-21T01:33:15Z) - Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and
ReLUs under Gaussian Marginals [49.60752558064027]
We study the fundamental problems of agnostically learning halfspaces and ReLUs under Gaussian marginals.
Our lower bounds provide strong evidence that current upper bounds for these tasks are essentially best possible.
arXiv Detail & Related papers (2020-06-29T17:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.