Relative volume of comparable pairs under semigroup majorization
- URL: http://arxiv.org/abs/2410.23196v3
- Date: Tue, 17 Dec 2024 10:50:28 GMT
- Title: Relative volume of comparable pairs under semigroup majorization
- Authors: Fabio Deelan Cunden, Jakub Czartowski, Giovanni Gramegna, A. de Oliveira Junior,
- Abstract summary: Any semigroup $mathcalS$ of matrices induces a semigroup majorization relation $precmathcalS$ on the set $Delta_n-1$ of probability $n$-vectors.
Pick $X,Y$ at random in $Delta_n-1$: what is the probability that $X$ and $Y$ are comparable under $precmathcalS$?
- Score: 0.0
- License:
- Abstract: Any semigroup $\mathcal{S}$ of stochastic matrices induces a semigroup majorization relation $\prec^{\mathcal{S}}$ on the set $\Delta_{n-1}$ of probability $n$-vectors. Pick $X,Y$ at random in $\Delta_{n-1}$: what is the probability that $X$ and $Y$ are comparable under $\prec^{\mathcal{S}}$? We review recent asymptotic ($n\to\infty$) results and conjectures in the case of majorization relation (when $\mathcal{S}$ is the set of doubly stochastic matrices), discuss natural generalisations, and prove a new asymptotic result in the case of majorization, and new exact finite-$n$ formulae in the case of UT-majorization relation, i.e. when $\mathcal{S}$ is the set of upper-triangular stochastic matrices.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - Fitting an ellipsoid to a quadratic number of random points [10.208117253395342]
We consider the problem $(mathrmP)$ of fitting $n$ standard Gaussian random vectors in $mathbbRd$ to the boundary of a centered ellipsoid, as $n, d to infty$.
This problem is conjectured to have a sharp feasibility transition: for any $varepsilon > 0$, if $n leq (1 - varepsilon) d2 / 4$ then $(mathrmP)$ has a solution with high probability.
arXiv Detail & Related papers (2023-07-03T17:46:23Z) - Learning linear dynamical systems under convex constraints [4.4351901934764975]
We consider the problem of identification of linear dynamical systems from $T$ samples of a single trajectory.
$A*$ can be reliably estimated for values $T$ smaller than what is needed for unconstrained setting.
arXiv Detail & Related papers (2023-03-27T11:49:40Z) - A random matrix model for random approximate $t$-designs [1.534667887016089]
A random matrix model is proposed to describe the probability distribution of $delta(nu_mathcalS,t)$ for any $t$.
We show that our model satisfies the so-called spectral gap conjecture, i.e. we prove that with the probability $1$ there is $tinmathbbZ_+$ such that $sup satisfieskinmathbbZ_+delta(k)=delta(t)$.
arXiv Detail & Related papers (2022-10-14T14:50:06Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Convergence Rate of the (1+1)-Evolution Strategy with Success-Based
Step-Size Adaptation on Convex Quadratic Functions [20.666734673282498]
The (1+1)-evolution strategy (ES) with success-based step-size adaptation is analyzed on a general convex quadratic function.
The convergence rate of the (1+1)-ES is derived explicitly and rigorously on a general convex quadratic function.
arXiv Detail & Related papers (2021-03-02T09:03:44Z) - Sparse sketches with small inversion bias [79.77110958547695]
Inversion bias arises when averaging estimates of quantities that depend on the inverse covariance.
We develop a framework for analyzing inversion bias, based on our proposed concept of an $(epsilon,delta)$-unbiased estimator for random matrices.
We show that when the sketching matrix $S$ is dense and has i.i.d. sub-gaussian entries, the estimator $(epsilon,delta)$-unbiased for $(Atop A)-1$ with a sketch of size $m=O(d+sqrt d/
arXiv Detail & Related papers (2020-11-21T01:33:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.