論文の概要: Partial Channel Dependence with Channel Masks for Time Series Foundation Models
- arxiv url: http://arxiv.org/abs/2410.23222v1
- Date: Wed, 30 Oct 2024 17:12:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:29:22.532502
- Title: Partial Channel Dependence with Channel Masks for Time Series Foundation Models
- Title(参考訳): 時系列基礎モデルにおけるチャネルマスクによる部分チャネル依存性
- Authors: Seunghan Lee, Taeyoung Park, Kibok Lee,
- Abstract要約: そこで我々は,部分チャネル依存(PCD)の概念を導入し,データセット固有の情報に基づいて,より洗練されたチャネル依存の調整を可能にする。
我々は,予測,分類,計算,異常検出を含む4つのタスクにおけるPCDの有効性を検証した。
- 参考スコア(独自算出の注目度): 5.752266579415516
- License:
- Abstract: Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily focused on designing model architectures to address explicit heterogeneity among datasets such as various numbers of channels, while often overlooking implicit heterogeneity such as varying dependencies between channels. In this work, we introduce the concept of partial channel dependence (PCD), which enables a more sophisticated adjustment of channel dependencies based on dataset-specific information. To achieve PCD, we propose a channel mask that captures the relationships between channels within a dataset using two key components: 1) a correlation matrix that encodes relative dependencies between channels, and 2) domain parameters that learn the absolute dependencies specific to each dataset, refining the correlation matrix. We validate the effectiveness of PCD across four tasks in TS including forecasting, classification, imputation, and anomaly detection, under diverse settings, including few-shot and zero-shot scenarios with both TS foundation models and single-task models. Code is available at https://github.com/seunghan96/CM.
- Abstract(参考訳): 近年の基盤モデルの進歩は、大規模なTSデータセットの出現にともなって、時系列(TS)領域への拡張に成功している。
しかし、従来の取り組みは、様々なチャンネル数のようなデータセット間の明示的な不均一性に対処するモデルアーキテクチャの設計に重点を置いていたが、しばしばチャンネル間の依存関係の変化など、暗黙的な不均一性を見落としている。
本研究では,部分チャネル依存(PCD)の概念を導入し,データセット固有の情報に基づいて,より洗練されたチャネル依存の調整を可能にする。
PCDを実現するために,2つのキーコンポーネントを用いて,データセット内のチャネル間の関係をキャプチャするチャネルマスクを提案する。
1)チャンネル間の相対的依存関係を符号化する相関行列
2) 各データセット固有の絶対依存を学習し,相関行列を精査するドメインパラメータ。
TS基礎モデルと単一タスクモデルの両方を用いた少数ショット・ゼロショットシナリオを含む多様な設定下で,予測,分類,計算,異常検出を含む4つのタスクにおけるPCDの有効性を検証した。
コードはhttps://github.com/seunghan96/CMで入手できる。
関連論文リスト
- DisenTS: Disentangled Channel Evolving Pattern Modeling for Multivariate Time Series Forecasting [43.071713191702486]
DisenTSは、一般的な時系列予測において、不整合チャネル進化パターンをモデル化するための調整されたフレームワークである。
本稿では,予測器の状態と入力系列の特性の両方に応じて適応的にルーティング信号を生成する,新しいフォアキャスタ・アウェアゲート(FAG)モジュールを提案する。
論文 参考訳(メタデータ) (2024-10-30T12:46:14Z) - A SSM is Polymerized from Multivariate Time Series [0.0]
MTS予測の新しい手法であるPoly-Mambaを開発した。
6つの実世界のデータセットの実験では、Poly-MambaがSOTA法より優れていることが示されている。
論文 参考訳(メタデータ) (2024-09-30T14:10:02Z) - Scalable Transformer for High Dimensional Multivariate Time Series Forecasting [10.17270031004674]
本研究では,高次元MSSデータ上でのチャネル依存モデルの最適性能の背景について検討する。
本稿では,高次元時系列予測のためのスケーラブル変換器STHDを提案する。
実験により、STHDは3つの高次元データセット(クリミア・シカゴ、ウィキ・ピープル、トラヒック)をかなり改善した。
論文 参考訳(メタデータ) (2024-08-08T06:17:13Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion [59.96233305733875]
時系列予測は、金融、交通管理、エネルギー、医療など様々な分野で重要な役割を果たしている。
いくつかの方法は、注意やミキサーのようなメカニズムを利用して、チャネル相関をキャプチャすることでこの問題に対処する。
本稿では,効率的なモデルであるSOFTS(Series-cOre Fused Time Series forecaster)を提案する。
論文 参考訳(メタデータ) (2024-04-22T14:06:35Z) - From Similarity to Superiority: Channel Clustering for Time Series Forecasting [61.96777031937871]
CCM(Channel Clustering Module)を開発した。
CCMは、固有の類似性を特徴とするチャネルを動的にグループ化し、個々のチャネルのアイデンティティの代わりにクラスタ情報を活用する。
CCMは、CIモデルとCDモデルのパフォーマンスを、それぞれ長期および短期の予測において平均利率2.4%と7.2%で向上させることができる。
論文 参考訳(メタデータ) (2024-03-31T02:46:27Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
完全時空間グラフニューラルネットワーク(FC-STGNN)という新しい手法を提案する。
グラフ構築のために、時間的距離に基づいて、すべてのタイムスタンプにセンサーを接続する減衰グラフを設計する。
グラフ畳み込みのために,移動プールGNN層を用いたFCグラフ畳み込みを考案し,ST依存性を効果的に把握し,効率的な表現を学習する。
論文 参考訳(メタデータ) (2023-09-11T08:44:07Z) - Graphical Modeling for Multi-Source Domain Adaptation [56.05348879528149]
マルチソースドメイン適応(MSDA)は、複数のソースドメインからターゲットドメインへの知識の転送に焦点を当てている。
我々は2種類のグラフィカルモデルを提案する。
MSDAの条件付きランダムフィールド(CRF-MSDA)とMSDAのマルコフランダムフィールド(MRF-MSDA)
これらの2つのモデルを、ドメインシフトとデータの複雑さが異なるMSDAの4つの標準ベンチマークデータセットで評価します。
論文 参考訳(メタデータ) (2021-04-27T09:04:22Z) - Ensemble Model with Batch Spectral Regularization and Data Blending for
Cross-Domain Few-Shot Learning with Unlabeled Data [75.94147344921355]
多様な特徴変換行列を用いてマルチブランチアンサンブルフレームワークを構築する。
本研究では,未ラベルデータを利用したデータブレンディング手法を提案し,対象領域におけるスパースサポートを増強する。
論文 参考訳(メタデータ) (2020-06-08T02:27:34Z) - Forecast Network-Wide Traffic States for Multiple Steps Ahead: A Deep
Learning Approach Considering Dynamic Non-Local Spatial Correlation and
Non-Stationary Temporal Dependency [6.019104024723682]
本研究では,交通予測における2つの問題について検討する。(1)交通リンク間の動的・非局所的な空間的相関を捉え,(2)正確な複数ステップの予測を行うための時間依存性のダイナミクスをモデル化する。
本稿では,これらの問題に対処するため,時空間列列モデル(STSeq2Seq)というディープラーニングフレームワークを提案する。
このモデルは、時間的特徴を捉えるためにシーケンスからシーケンス(seq2seq)アーキテクチャに基づいて構築され、空間情報を集約するためのグラフ畳み込みに依存している。
論文 参考訳(メタデータ) (2020-04-06T03:40:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。