EMMA: End-to-End Multimodal Model for Autonomous Driving
- URL: http://arxiv.org/abs/2410.23262v2
- Date: Mon, 04 Nov 2024 18:44:20 GMT
- Title: EMMA: End-to-End Multimodal Model for Autonomous Driving
- Authors: Jyh-Jing Hwang, Runsheng Xu, Hubert Lin, Wei-Chih Hung, Jingwei Ji, Kristy Choi, Di Huang, Tong He, Paul Covington, Benjamin Sapp, Yin Zhou, James Guo, Dragomir Anguelov, Mingxing Tan,
- Abstract summary: We introduce EMMA, an End-to-end Multimodal Model for Autonomous driving.
Built on a multi-modal large language model foundation, EMMA directly maps raw camera sensor data into various driving-specific outputs.
- Score: 56.972452552944056
- License:
- Abstract: We introduce EMMA, an End-to-end Multimodal Model for Autonomous driving. Built on a multi-modal large language model foundation, EMMA directly maps raw camera sensor data into various driving-specific outputs, including planner trajectories, perception objects, and road graph elements. EMMA maximizes the utility of world knowledge from the pre-trained large language models, by representing all non-sensor inputs (e.g. navigation instructions and ego vehicle status) and outputs (e.g. trajectories and 3D locations) as natural language text. This approach allows EMMA to jointly process various driving tasks in a unified language space, and generate the outputs for each task using task-specific prompts. Empirically, we demonstrate EMMA's effectiveness by achieving state-of-the-art performance in motion planning on nuScenes as well as competitive results on the Waymo Open Motion Dataset (WOMD). EMMA also yields competitive results for camera-primary 3D object detection on the Waymo Open Dataset (WOD). We show that co-training EMMA with planner trajectories, object detection, and road graph tasks yields improvements across all three domains, highlighting EMMA's potential as a generalist model for autonomous driving applications. However, EMMA also exhibits certain limitations: it can process only a small amount of image frames, does not incorporate accurate 3D sensing modalities like LiDAR or radar and is computationally expensive. We hope that our results will inspire further research to mitigate these issues and to further evolve the state of the art in autonomous driving model architectures.
Related papers
- DriveMM: All-in-One Large Multimodal Model for Autonomous Driving [63.882827922267666]
DriveMM is a large multimodal model designed to process diverse data inputs, such as images and multi-view videos, while performing a broad spectrum of autonomous driving tasks.
We conduct evaluations on six public benchmarks and undertake zero-shot transfer on an unseen dataset, where DriveMM achieves state-of-the-art performance across all tasks.
arXiv Detail & Related papers (2024-12-10T17:27:32Z) - Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks [0.0]
In this work, we focus on unsupervised vision-language--action mapping in the area of robotic manipulation.
We propose a model-invariant training alternative that improves the models' performance in a simulator by up to 55%.
Our work thus also sheds light on the potential benefits and limitations of using the current multimodal VAEs for unsupervised learning of robotic motion trajectories.
arXiv Detail & Related papers (2024-04-02T13:25:16Z) - LiDAR-BEVMTN: Real-Time LiDAR Bird's-Eye View Multi-Task Perception Network for Autonomous Driving [12.713417063678335]
We present a real-time multi-task convolutional neural network for LiDAR-based object detection, semantics, and motion segmentation.
We propose a novel Semantic Weighting and Guidance (SWAG) module to transfer semantic features for improved object detection selectively.
We achieve state-of-the-art results for two tasks, semantic and motion segmentation, and close to state-of-the-art performance for 3D object detection.
arXiv Detail & Related papers (2023-07-17T21:22:17Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3D human pose estimation is an emerging technology, which can enable the autonomous vehicle to perceive and understand the subtle and complex behaviors of pedestrians.
Our method efficiently makes use of these complementary signals, in a semi-supervised fashion and outperforms existing methods with a large margin.
Specifically, we embed LiDAR points into pixel-aligned multi-modal features, which we pass through a sequence of Transformer refinement stages.
arXiv Detail & Related papers (2022-12-15T11:15:14Z) - Towards Multimodal Multitask Scene Understanding Models for Indoor
Mobile Agents [49.904531485843464]
In this paper, we discuss the main challenge: insufficient, or even no, labeled data for real-world indoor environments.
We describe MMISM (Multi-modality input Multi-task output Indoor Scene understanding Model) to tackle the above challenges.
MMISM considers RGB images as well as sparse Lidar points as inputs and 3D object detection, depth completion, human pose estimation, and semantic segmentation as output tasks.
We show that MMISM performs on par or even better than single-task models.
arXiv Detail & Related papers (2022-09-27T04:49:19Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - DMD: A Large-Scale Multi-Modal Driver Monitoring Dataset for Attention
and Alertness Analysis [54.198237164152786]
Vision is the richest and most cost-effective technology for Driver Monitoring Systems (DMS)
The lack of sufficiently large and comprehensive datasets is currently a bottleneck for the progress of DMS development.
In this paper, we introduce the Driver Monitoring dataset (DMD), an extensive dataset which includes real and simulated driving scenarios.
arXiv Detail & Related papers (2020-08-27T12:33:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.