A superconducting on-chip microwave cavity for tunable hybrid systems with optically trapped Rydberg atoms
- URL: http://arxiv.org/abs/2410.23269v1
- Date: Wed, 30 Oct 2024 17:52:03 GMT
- Title: A superconducting on-chip microwave cavity for tunable hybrid systems with optically trapped Rydberg atoms
- Authors: Benedikt Wilde, Manuel Kaiser, Malte Reinschmidt, Andreas Günther, Dieter Koelle, Jószef Fortágh, Reinhold Kleiner, Daniel Bothner,
- Abstract summary: Hybrid quantum systems are highly promising platforms for addressing challenges of quantum information science and quantum sensing.
Here, we work towards a hybrid system consisting of a superconducting on-chip microwave circuit in a dilution refrigerator and optically trapped ultra-cold atoms.
- Score: 0.0
- License:
- Abstract: Hybrid quantum systems are highly promising platforms for addressing important challenges of quantum information science and quantum sensing. Their implementation, however, is technologically non-trivial, since each component typically has unique experimental requirements. Here, we work towards a hybrid system consisting of a superconducting on-chip microwave circuit in a dilution refrigerator and optically trapped ultra-cold atoms. Specifically, we focus on the design optimization of a suitable superconducting chip and on the corresponding challenges and limitations. We unfold detailed microwave-cavity engineering strategies for maximized and tunable coupling rates to atomic Rydberg-Rydberg transitions in $\mathrm{^{87}Rb}$ atoms while respecting the boundary conditions due to the presence of a laser beam near the surface of the chip. Finally, we present an experimental implementation of the superconducting microwave chip and discuss the cavity characteristics as a function of temperature and applied dc voltage. Our results illuminate the required consideration aspects for a flexible, tunable superconductor-atom hybrid system, and lay the groundwork for realizing this exciting platform in a dilution refrigerator with vacuum Rabi frequencies approaching the strong-coupling regime.
Related papers
- Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - High-fidelity two-qubit gates of hybrid superconducting-semiconducting
singlet-triplet qubits [0.0]
Superconductors induce long-range interactions between the spin degrees of freedom of quantum dots.
We show that this anisotropy is tunable and enables fast and high-fidelity two-qubit gates between singlet-triplet (ST) spin qubits.
Our design is immune to leakage of the quantum information into noncomputational states.
arXiv Detail & Related papers (2023-04-11T09:30:38Z) - Vortex-enabled Andreev processes in quantum Hall-superconductor hybrids [0.0]
We investigate transport through a proximitized integer quantum Hall edge.
By examining the downstream conductance, we identify regimes in which sub-gap vortex levels mediate Andreev processes.
We show that at finite temperature, and in the limit of a large number of vortices, the downstream conductance can average to zero, indicating that the superconductor effectively behaves like a normal contact.
arXiv Detail & Related papers (2022-07-21T18:00:15Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Entangling remote microwave quantum computers with hybrid entanglement
swap and variational distillation [4.046143379963425]
Superconducting microwave circuits with Josephson junctions are a major platform for quantum computing.
We propose a continuous-variable entanglement-swap approach based on optical-microwave entanglement generation.
Our work provides a practical method to realize efficient quantum links for superconducting microwave quantum computers.
arXiv Detail & Related papers (2022-06-29T14:34:29Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Cavity driven Rabi oscillations between Rydberg states of atoms trapped
on a superconducting atom chip [0.0]
Hybrid quantum systems involving cold atoms and microwave resonators can enable infinite-range interactions.
We report on the realization of coherent coupling of a Rydberg transition of ultracold atoms trapped on an integrated superconducting atom chip to the microwave field of an on-chip coplanar waveguide resonator.
arXiv Detail & Related papers (2021-05-11T16:43:07Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Cavity piezo-mechanics for superconducting-nanophotonic quantum
interface [6.047107581901681]
We report an integrated superconducting cavity piezo-optomechanical platform where 10-GHz phonons are resonantly coupled with photons in a superconducting and a nanophotonic cavities.
We demonstrate coherent interactions at cryogenic temperatures via the observation of efficient microwave-optical photon conversion.
This hybrid interface makes a substantial step towards quantum communication at large scale, as well as novel explorations in microwave-optical photon entanglement and quantum sensing mediated by gigahertz phonons.
arXiv Detail & Related papers (2020-01-26T16:33:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.