Entangling remote microwave quantum computers with hybrid entanglement
swap and variational distillation
- URL: http://arxiv.org/abs/2206.14682v1
- Date: Wed, 29 Jun 2022 14:34:29 GMT
- Title: Entangling remote microwave quantum computers with hybrid entanglement
swap and variational distillation
- Authors: Bingzhi Zhang, Jing Wu, Linran Fan and Quntao Zhuang
- Abstract summary: Superconducting microwave circuits with Josephson junctions are a major platform for quantum computing.
We propose a continuous-variable entanglement-swap approach based on optical-microwave entanglement generation.
Our work provides a practical method to realize efficient quantum links for superconducting microwave quantum computers.
- Score: 4.046143379963425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superconducting microwave circuits with Josephson junctions are a major
platform for quantum computing. To unleash their full capabilities, the
cooperative operation of multiple microwave superconducting circuits is
required. Therefore, designing an efficient protocol to distribute microwave
entanglement remotely becomes a crucial open problem. Here, we propose a
continuous-variable entanglement-swap approach based on optical-microwave
entanglement generation, which can boost the ultimate rate by two orders of
magnitude at state-of-the-art parameter region, compared with traditional
approaches. We further empower the protocol with a hybrid variational
entanglement distillation component to provide huge advantage in the
infidelity-versus-success-probability trade-off. Our protocol can be realized
with near-term device performance, and is robust against non-perfections such
as optical loss and noise. Therefore, our work provides a practical method to
realize efficient quantum links for superconducting microwave quantum
computers.
Related papers
- An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Maxwell-Schr\"{o}dinger Modeling of Superconducting Qubits Coupled to
Transmission Line Networks [0.0]
In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states.
Currently, the design of these microwave pulses use simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse.
We present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schr"odinger method for describing these self-consistent dynamics.
arXiv Detail & Related papers (2022-10-14T16:11:55Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Deterministic microwave-optical transduction based on quantum
teleportation [4.046143379963425]
coherent transduction between microwave and optical frequencies is critical to interconnect superconducting quantum processors over long distances.
We propose a scheme based on continuous-variable quantum teleportation.
We show that the teleportation-based scheme maintains a significant rate advantage robustly for all values of cooperativity.
arXiv Detail & Related papers (2021-06-26T15:02:49Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z) - A low-noise on-chip coherent microwave source [0.0]
We report an on-chip device that is based on a Josephson junction coupled to a spiral resonator and is capable of coherent continuous-wave microwave emission.
The infidelity of typical quantum gate operations due to the phase noise of this cryogenic 25-pW microwave source is less than 0.1% up to 10-ms evolution times.
arXiv Detail & Related papers (2021-03-13T04:51:53Z) - Microwave Quantum Link between Superconducting Circuits Housed in
Spatially Separated Cryogenic Systems [43.55994393060723]
We report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters.
We transfer qubit states and generate entanglement on-demand with average transfer and target state fidelities of 85.8 % and 79.5 %, respectively.
arXiv Detail & Related papers (2020-08-04T15:36:51Z) - Two-way covert quantum communication in the microwave regime [0.0]
Quantum communication addresses the problem of exchanging information across macroscopic distances.
We advance a new paradigm for secure quantum communication by combining backscattering concepts with covert communication in the microwave regime.
This work makes a decisive step toward implementing secure quantum communication concepts in the previously uncharted $1$-$10$ GHz frequency range.
arXiv Detail & Related papers (2020-04-15T16:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.