ReferEverything: Towards Segmenting Everything We Can Speak of in Videos
- URL: http://arxiv.org/abs/2410.23287v1
- Date: Wed, 30 Oct 2024 17:59:26 GMT
- Title: ReferEverything: Towards Segmenting Everything We Can Speak of in Videos
- Authors: Anurag Bagchi, Zhipeng Bao, Yu-Xiong Wang, Pavel Tokmakov, Martial Hebert,
- Abstract summary: We present REM, a framework for segmenting concepts in video that can be described through natural language.
Our method capitalizes on visual representations learned by video diffusion models on Internet-scale datasets.
- Score: 42.88584315033116
- License:
- Abstract: We present REM, a framework for segmenting a wide range of concepts in video that can be described through natural language. Our method capitalizes on visual-language representations learned by video diffusion models on Internet-scale datasets. A key insight of our approach is preserving as much of the generative model's original representation as possible, while fine-tuning it on narrow-domain Referral Object Segmentation datasets. As a result, our framework can accurately segment and track rare and unseen objects, despite being trained on object masks from a limited set of categories. Additionally, it can generalize to non-object dynamic concepts, such as waves crashing in the ocean, as demonstrated in our newly introduced benchmark for Referral Video Process Segmentation (Ref-VPS). Our experiments show that REM performs on par with state-of-the-art approaches on in-domain datasets, like Ref-DAVIS, while outperforming them by up to twelve points in terms of region similarity on out-of-domain data, leveraging the power of Internet-scale pre-training.
Related papers
- Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - Learning from SAM: Harnessing a Foundation Model for Sim2Real Adaptation by Regularization [17.531847357428454]
Domain adaptation is especially important for robotics applications, where target domain training data is usually scarce and annotations are costly to obtain.
We present a method for self-supervised domain adaptation for the scenario where annotated source domain data is available.
Our method targets the semantic segmentation task and leverages a segmentation foundation model (Segment Anything Model) to obtain segment information on unannotated data.
arXiv Detail & Related papers (2023-09-27T10:37:36Z) - Segmenting Moving Objects via an Object-Centric Layered Representation [100.26138772664811]
We introduce an object-centric segmentation model with a depth-ordered layer representation.
We introduce a scalable pipeline for generating synthetic training data with multiple objects.
We evaluate the model on standard video segmentation benchmarks.
arXiv Detail & Related papers (2022-07-05T17:59:43Z) - Human Instance Segmentation and Tracking via Data Association and
Single-stage Detector [17.46922710432633]
Human video instance segmentation plays an important role in computer understanding of human activities.
Most current VIS methods are based on Mask-RCNN framework.
We develop a new method for human video instance segmentation based on single-stage detector.
arXiv Detail & Related papers (2022-03-31T11:36:09Z) - DyStaB: Unsupervised Object Segmentation via Dynamic-Static
Bootstrapping [72.84991726271024]
We describe an unsupervised method to detect and segment portions of images of live scenes that are seen moving as a coherent whole.
Our method first partitions the motion field by minimizing the mutual information between segments.
It uses the segments to learn object models that can be used for detection in a static image.
arXiv Detail & Related papers (2020-08-16T22:05:13Z) - Unsupervised Learning of Video Representations via Dense Trajectory
Clustering [86.45054867170795]
This paper addresses the task of unsupervised learning of representations for action recognition in videos.
We first propose to adapt two top performing objectives in this class - instance recognition and local aggregation.
We observe promising performance, but qualitative analysis shows that the learned representations fail to capture motion patterns.
arXiv Detail & Related papers (2020-06-28T22:23:03Z) - SceneEncoder: Scene-Aware Semantic Segmentation of Point Clouds with A
Learnable Scene Descriptor [51.298760338410624]
We propose a SceneEncoder module to impose a scene-aware guidance to enhance the effect of global information.
The module predicts a scene descriptor, which learns to represent the categories of objects existing in the scene.
We also design a region similarity loss to propagate distinguishing features to their own neighboring points with the same label.
arXiv Detail & Related papers (2020-01-24T16:53:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.