論文の概要: MoLE: Enhancing Human-centric Text-to-image Diffusion via Mixture of Low-rank Experts
- arxiv url: http://arxiv.org/abs/2410.23332v1
- Date: Wed, 30 Oct 2024 17:59:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:03:39.636528
- Title: MoLE: Enhancing Human-centric Text-to-image Diffusion via Mixture of Low-rank Experts
- Title(参考訳): MoLE: 低ランク専門家の混在による人中心型テキスト・画像拡散の促進
- Authors: Jie Zhu, Yixiong Chen, Mingyu Ding, Ping Luo, Leye Wang, Jingdong Wang,
- Abstract要約: 顔と手の文脈における人間中心のテキスト・ツー・イメージ生成について検討する。
そこで我々は,手近画像と顔画像で訓練した低ランクモジュールをそれぞれ専門家として考慮し,Mixture of Low-rank Experts (MoLE) という手法を提案する。
この概念は、カスタマイズされたクローズアップデータセットによって訓練された低ランクモジュールが、適切なスケールで適用された場合、対応する画像部分を強化する可能性があるという、低ランクリファインメント(low-rank refinement)の観察から着想を得たものである。
- 参考スコア(独自算出の注目度): 61.274246025372044
- License:
- Abstract: Text-to-image diffusion has attracted vast attention due to its impressive image-generation capabilities. However, when it comes to human-centric text-to-image generation, particularly in the context of faces and hands, the results often fall short of naturalness due to insufficient training priors. We alleviate the issue in this work from two perspectives. 1) From the data aspect, we carefully collect a human-centric dataset comprising over one million high-quality human-in-the-scene images and two specific sets of close-up images of faces and hands. These datasets collectively provide a rich prior knowledge base to enhance the human-centric image generation capabilities of the diffusion model. 2) On the methodological front, we propose a simple yet effective method called Mixture of Low-rank Experts (MoLE) by considering low-rank modules trained on close-up hand and face images respectively as experts. This concept draws inspiration from our observation of low-rank refinement, where a low-rank module trained by a customized close-up dataset has the potential to enhance the corresponding image part when applied at an appropriate scale. To validate the superiority of MoLE in the context of human-centric image generation compared to state-of-the-art, we construct two benchmarks and perform evaluations with diverse metrics and human studies. Datasets, model, and code are released at https://sites.google.com/view/mole4diffuser/.
- Abstract(参考訳): テキストから画像への拡散は、その印象的な画像生成能力によって大きな注目を集めている。
しかし、人間中心のテキスト・ツー・イメージ生成、特に顔と手の文脈では、トレーニング前の不足により結果が自然性に欠けることが多い。
この作業の問題を2つの観点から緩和する。
1)データ的側面から,100万以上の高品質な人文画像と,顔と手のクローズアップ画像の2つの特定のセットからなる人文中心のデータセットを慎重に収集する。
これらのデータセットは、拡散モデルの人間中心の画像生成能力を高めるために、豊富な事前知識ベースを提供する。
2)本手法では,手近画像と顔画像で訓練した低ランクモジュールをそれぞれ専門家として考慮し,Mixture of Low-rank Experts (MoLE) と呼ばれる簡易かつ効果的な手法を提案する。
この概念は、カスタマイズされたクローズアップデータセットによって訓練された低ランクモジュールが、適切なスケールで適用された場合、対応する画像部分を強化する可能性があるという、低ランクリファインメント(low-rank refinement)の観察から着想を得たものである。
人間の中心画像生成の文脈におけるMoLEの優位性を評価するために,我々は2つのベンチマークを構築し,多様なメトリクスと人間の研究による評価を行った。
データセット、モデル、コードはhttps://sites.google.com/view/mole4diffuser/.comで公開される。
関連論文リスト
- Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
テキストと画像の拡散モデルに光を流す新しいHOI検出器であるDIFfusionHOIを紹介する。
まず、埋め込み空間における人間と物体の関係パターンの表現をインバージョンベースで学習する戦略を考案する。
これらの学習された関係埋め込みはテキストのプロンプトとして機能し、スタイア拡散モデルが特定の相互作用を記述する画像を生成する。
論文 参考訳(メタデータ) (2024-10-26T12:00:33Z) - Boost Your Own Human Image Generation Model via Direct Preference Optimization with AI Feedback [5.9726297901501475]
直接選好最適化(DPO)を利用した人体画像生成に特化した新しいアプローチを提案する。
具体的には、コストのかかる人的フィードバックを必要とせずに、人間の画像生成モデルを訓練するための特殊なDPOデータセットを構築するための効率的な方法を提案する。
本手法は,画像のパーソナライズ・テキスト・ツー・イメージ生成など,画像生成の汎用性と有効性を示す。
論文 参考訳(メタデータ) (2024-05-30T16:18:05Z) - CosmicMan: A Text-to-Image Foundation Model for Humans [30.155677646188572]
我々は,高忠実度画像を生成するためのテキスト・ツー・イメージ基盤モデルであるCosmicManを提案する。
CosmicManは、微妙な外観、合理的な構造、詳細な詳細な詳細な記述と正確なテキストイメージアライメントを備えた写真リアルな人間の画像を生成することができる。
論文 参考訳(メタデータ) (2024-04-01T17:59:05Z) - Texture-Preserving Diffusion Models for High-Fidelity Virtual Try-On [29.217423805933727]
拡散モデルに基づくアプローチは,画像合成タスクに優れており,近年普及している。
本稿では,仮想試行のためのテクスチャ保存拡散(TPD)モデルを提案する。
第2に,被写体と参照衣料画像に基づいて,正確な塗布マスクを推定する拡散に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-01T12:43:22Z) - Towards Effective Usage of Human-Centric Priors in Diffusion Models for
Text-based Human Image Generation [24.49857926071974]
バニラテキスト画像拡散モデルでは、正確な人間の画像を生成するのに苦労する。
既存のメソッドは、主に余分なイメージでモデルを微調整したり、追加のコントロールを追加することでこの問題に対処する。
本稿では,人間中心の先行概念のモデル微調整段階への直接統合について検討する。
論文 参考訳(メタデータ) (2024-03-08T11:59:32Z) - Stellar: Systematic Evaluation of Human-Centric Personalized
Text-to-Image Methods [52.806258774051216]
我々は,個々のイメージを入力し,生成プロセスの基盤となるテキストと,所望の視覚的コンテキストを記述したテキストに焦点をあてる。
我々は,既存の関連するデータセットよりも桁違いの大きさの個人画像と,リッチなセマンティックな接地真実アノテーションが容易に利用できるパーソナライズされたプロンプトを含む標準化データセット(Stellar)を紹介した。
被験者ごとにテストタイムの微調整を必要とせず,新しいSoTAを定量的かつ人為的に設定した,シンプルで効率的でパーソナライズされたテキスト・ツー・イメージのベースラインを導出する。
論文 参考訳(メタデータ) (2023-12-11T04:47:39Z) - HyperHuman: Hyper-Realistic Human Generation with Latent Structural Diffusion [114.15397904945185]
本稿では,高リアリズムと多彩なレイアウトの人体画像を生成する統一的なフレームワークHyperHumanを提案する。
本モデルは,統合ネットワークにおける画像の外観,空間的関係,幾何学の連成学習を強制する。
我々のフレームワークは最先端の性能を生み出し、多様なシナリオ下で超現実的な人間の画像を生成する。
論文 参考訳(メタデータ) (2023-10-12T17:59:34Z) - HumanDiffusion: a Coarse-to-Fine Alignment Diffusion Framework for
Controllable Text-Driven Person Image Generation [73.3790833537313]
制御可能な人物画像生成は、デジタルヒューマンインタラクションや仮想トライオンといった幅広い応用を促進する。
テキスト駆動型人物画像生成のための粗大なアライメント拡散フレームワークHumanDiffusionを提案する。
論文 参考訳(メタデータ) (2022-11-11T14:30:34Z) - Bridging Composite and Real: Towards End-to-end Deep Image Matting [88.79857806542006]
画像マッチングにおける意味論と細部の役割について検討する。
本稿では,共有エンコーダと2つの分離デコーダを用いた新しいGlance and Focus Matting Network(GFM)を提案する。
総合的な実証研究により、GFMは最先端の手法より優れていることが示されている。
論文 参考訳(メタデータ) (2020-10-30T10:57:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。