Resource Governance in Networked Systems via Integrated Variational Autoencoders and Reinforcement Learning
- URL: http://arxiv.org/abs/2410.23393v1
- Date: Wed, 30 Oct 2024 18:57:02 GMT
- Title: Resource Governance in Networked Systems via Integrated Variational Autoencoders and Reinforcement Learning
- Authors: Qiliang Chen, Babak Heydari,
- Abstract summary: We introduce a framework that integrates variational autoencoders (VAE) with reinforcement learning (RL) to balance system performance.
A key innovation of this method is its capability to handle the vast action space of the network structure.
- Score: 0.8287206589886879
- License:
- Abstract: We introduce a framework that integrates variational autoencoders (VAE) with reinforcement learning (RL) to balance system performance and resource usage in multi-agent systems by dynamically adjusting network structures over time. A key innovation of this method is its capability to handle the vast action space of the network structure. This is achieved by combining Variational Auto-Encoder and Deep Reinforcement Learning to control the latent space encoded from the network structures. The proposed method, evaluated on the modified OpenAI particle environment under various scenarios, not only demonstrates superior performance compared to baselines but also reveals interesting strategies and insights through the learned behaviors.
Related papers
- Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Towards Understanding the Link Between Modularity and Performance in Neural Networks for Reinforcement Learning [2.038038953957366]
We find that the amount of network modularity for optimal performance is likely entangled in complex relationships between many other features of the network and problem environment.
We used a classic neuroevolutionary algorithm which enables rich, automatic optimisation and exploration of neural network architectures.
arXiv Detail & Related papers (2022-05-13T05:18:18Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
In this paper, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.
The presented methodology directly improves a convolutional neural network (CNN) by enforcing the input image structure preservation through auto-encoders.
To validate the presented methodology, a simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on the CIFAR100 dataset.
arXiv Detail & Related papers (2021-10-06T13:54:49Z) - Physical deep learning based on optimal control of dynamical systems [0.0]
In this study, we perform pattern recognition based on the optimal control of continuous-time dynamical systems.
As a key example, we apply the dynamics-based recognition approach to an optoelectronic delay system.
This is in contrast to conventional multilayer neural networks, which require a large number of weight parameters to be trained.
arXiv Detail & Related papers (2020-12-16T06:38:01Z) - DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control [0.0]
We present a novel approach that captures the underlying dynamics of a system by incorporating control in a neural ordinary differential equation framework.
Results indicate that a simple DyNODE architecture when combined with an actor-critic reinforcement learning algorithm outperforms canonical neural networks.
arXiv Detail & Related papers (2020-09-09T12:56:58Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.