DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control
- URL: http://arxiv.org/abs/2009.04278v1
- Date: Wed, 9 Sep 2020 12:56:58 GMT
- Title: DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control
- Authors: Victor M. Martinez Alvarez and Rare\c{s} Ro\c{s}ca and Cristian G.
F\u{a}lcu\c{t}escu
- Abstract summary: We present a novel approach that captures the underlying dynamics of a system by incorporating control in a neural ordinary differential equation framework.
Results indicate that a simple DyNODE architecture when combined with an actor-critic reinforcement learning algorithm outperforms canonical neural networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach (DyNODE) that captures the underlying dynamics of
a system by incorporating control in a neural ordinary differential equation
framework. We conduct a systematic evaluation and comparison of our method and
standard neural network architectures for dynamics modeling. Our results
indicate that a simple DyNODE architecture when combined with an actor-critic
reinforcement learning (RL) algorithm that uses model predictions to improve
the critic's target values, outperforms canonical neural networks, both in
sample efficiency and predictive performance across a diverse range of
continuous tasks that are frequently used to benchmark RL algorithms. This
approach provides a new avenue for the development of models that are more
suited to learn the evolution of dynamical systems, particularly useful in the
context of model-based reinforcement learning. To assist related work, we have
made code available at https://github.com/vmartinezalvarez/DyNODE .
Related papers
- Bridging Autoencoders and Dynamic Mode Decomposition for Reduced-order Modeling and Control of PDEs [12.204795159651589]
This paper explores a deep autocodingen learning method for reduced-order modeling and control of dynamical systems governed by Ptemporals.
We first show that an objective for learning a linear autoen reduced-order model can be formulated to yield a solution closely resembling the result obtained through the dynamic mode decomposition with control algorithm.
We then extend this linear autoencoding architecture to a deep autocoding framework, enabling the development of a nonlinear reduced-order model.
arXiv Detail & Related papers (2024-09-09T22:56:40Z) - Model-based Policy Optimization using Symbolic World Model [46.42871544295734]
The application of learning-based control methods in robotics presents significant challenges.
One is that model-free reinforcement learning algorithms use observation data with low sample efficiency.
We suggest approximating transition dynamics with symbolic expressions, which are generated via symbolic regression.
arXiv Detail & Related papers (2024-07-18T13:49:21Z) - KAN-ODEs: Kolmogorov-Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics [0.0]
Kolmogorov-Arnold networks (KANs) are an alternative to multi-layer perceptrons (MLPs)
This work applies KANs as the backbone of a neural ordinary differential equation (ODE) framework.
arXiv Detail & Related papers (2024-07-05T00:38:49Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Semi-Supervised Learning of Dynamical Systems with Neural Ordinary
Differential Equations: A Teacher-Student Model Approach [10.20098335268973]
TS-NODE is the first semi-supervised approach to modeling dynamical systems with NODE.
We show significant performance improvements over a baseline Neural ODE model on multiple dynamical system modeling tasks.
arXiv Detail & Related papers (2023-10-19T19:17:12Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
We present a new model-based reinforcement learning algorithm that learns a multi-headed dynamics model for dynamics generalization.
We incorporate context learning, which encodes dynamics-specific information from past experiences into the context latent vector.
Our method exhibits superior zero-shot generalization performance across a variety of control tasks, compared to state-of-the-art RL methods.
arXiv Detail & Related papers (2020-10-26T03:20:42Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.