論文の概要: Auditing for Bias in Ad Delivery Using Inferred Demographic Attributes
- arxiv url: http://arxiv.org/abs/2410.23394v1
- Date: Wed, 30 Oct 2024 18:57:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:02:33.853813
- Title: Auditing for Bias in Ad Delivery Using Inferred Demographic Attributes
- Title(参考訳): Inferred Demographic Attributes を用いた広告配信におけるバイアスの検証
- Authors: Basileal Imana, Aleksandra Korolova, John Heidemann,
- Abstract要約: 広告配信のブラックボックス監査において,予測誤差が偏見の監査に与える影響について検討した。
本稿では,広告配信アルゴリズムのスキュー評価において,推測誤差を軽減する手法を提案する。
- 参考スコア(独自算出の注目度): 50.37313459134418
- License:
- Abstract: Auditing social-media algorithms has become a focus of public-interest research and policymaking to ensure their fairness across demographic groups such as race, age, and gender in consequential domains such as the presentation of employment opportunities. However, such demographic attributes are often unavailable to auditors and platforms. When demographics data is unavailable, auditors commonly infer them from other available information. In this work, we study the effects of inference error on auditing for bias in one prominent application: black-box audit of ad delivery using paired ads. We show that inference error, if not accounted for, causes auditing to falsely miss skew that exists. We then propose a way to mitigate the inference error when evaluating skew in ad delivery algorithms. Our method works by adjusting for expected error due to demographic inference, and it makes skew detection more sensitive when attributes must be inferred. Because inference is increasingly used for auditing, our results provide an important addition to the auditing toolbox to promote correct audits of ad delivery algorithms for bias. While the impact of attribute inference on accuracy has been studied in other domains, our work is the first to consider it for black-box evaluation of ad delivery bias, when only aggregate data is available to the auditor.
- Abstract(参考訳): ソーシャル・メディア・アルゴリズムの監査は、雇用機会の提示など、連続した領域における人種、年齢、性別などの人口集団間の公正性を確保するために、公共の関心のある研究と政策作成の焦点となっている。
しかし、このような人口統計特性は監査官やプラットフォームでは利用できないことが多い。
人口統計データが入手できない場合、監査人は一般に他の利用可能な情報からそれらを推測する。
本研究は,広告配信のブラックボックス監査において,推定誤差が偏見の監査に与える影響について検討する。
推論エラーは、考慮されていないとしても、監査が存在するスクリューを誤って見逃す原因であることを示す。
次に、広告配信アルゴリズムの歪を評価する際に、推測誤差を軽減する方法を提案する。
提案手法は, 人口統計学的推定による予測誤差を補正し, 属性を推定しなければならない場合のスキュー検出をより敏感に行う。
広告配信アルゴリズムのバイアスに対する適切な監査を促進するために,評価ツールボックスに重要な付加情報を提供する。
属性推定が精度に与える影響は,他の領域で研究されているが,本研究は,アグリゲーションデータのみを監査者に提供した場合に,広告配信バイアスのブラックボックス評価を行うための最初の試みである。
関連論文リスト
- Auditing for Racial Discrimination in the Delivery of Education Ads [50.37313459134418]
本稿では,教育機会のための広告配信において,人種的偏見を評価できる新たな第三者監査手法を提案する。
メタのアルゴリズムによる教育機会の広告配信における人種差別の証拠を見つけ、法的および倫理的懸念を訴える。
論文 参考訳(メタデータ) (2024-06-02T02:00:55Z) - The Impact of Differential Feature Under-reporting on Algorithmic Fairness [86.275300739926]
解析的に抽出可能な差分特徴のアンダーレポーティングモデルを提案する。
そして、この種のデータバイアスがアルゴリズムの公正性に与える影響を特徴づける。
我々の結果は、実世界のデータ設定では、アンダーレポートが典型的に格差を増大させることを示している。
論文 参考訳(メタデータ) (2024-01-16T19:16:22Z) - A Brief Tutorial on Sample Size Calculations for Fairness Audits [6.66743248310448]
本チュートリアルでは、フェアネス監査に必要なサブグループサンプルサイズを決定する方法についてのガイダンスを提供する。
本研究は,2値分類モデルと混同行列の要約として導出された多重公平度指標の監査に適用できる。
論文 参考訳(メタデータ) (2023-12-07T22:59:12Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Understanding Unfairness in Fraud Detection through Model and Data Bias
Interactions [4.159343412286401]
アルゴリズムの不公平性は、データ内のモデルとバイアスの間の相互作用に起因すると我々は主張する。
フェアネスブラインドMLアルゴリズムが示す公平さと正確さのトレードオフに関する仮説を、異なるデータバイアス設定下で検討する。
論文 参考訳(メタデータ) (2022-07-13T15:18:30Z) - Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax
Audit Models [73.24381010980606]
本研究は、IRSによる税務監査選択を通知するシステムの文脈におけるアルゴリズムフェアネスの問題について検討する。
監査を選択するための柔軟な機械学習手法が、垂直エクイティにどのように影響するかを示す。
この結果は,公共セクター全体でのアルゴリズムツールの設計に影響を及ぼす。
論文 参考訳(メタデータ) (2022-06-20T16:27:06Z) - Auditing for Discrimination in Algorithms Delivering Job Ads [70.02478301291264]
我々は,求人広告配信における識別アルゴリズムのブラックボックス監査のための新しい手法を開発した。
最初のコントリビューションは、性別や人種などの保護されたカテゴリーによる、広告配信における歪の区別です。
第2に,他の要因と資格の違いによって説明可能なスクリューを区別する監査手法を開発する。
第3に、提案手法を求人広告のための2つの主要なターゲット広告プラットフォーム、FacebookとLinkedInに適用する。
論文 参考訳(メタデータ) (2021-04-09T17:38:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。