VisualCoder: Guiding Large Language Models in Code Execution with Fine-grained Multimodal Chain-of-Thought Reasoning
- URL: http://arxiv.org/abs/2410.23402v3
- Date: Sun, 09 Feb 2025 16:30:00 GMT
- Title: VisualCoder: Guiding Large Language Models in Code Execution with Fine-grained Multimodal Chain-of-Thought Reasoning
- Authors: Cuong Chi Le, Hoang-Chau Truong-Vinh, Huy Nhat Phan, Dung Duy Le, Tien N. Nguyen, Nghi D. Q. Bui,
- Abstract summary: We introduce VisualCoder, a simple yet effective approach that enhances code reasoning by integrating multimodal Chain-of-Thought snippets (CoT) reasoning with a visual Control Flow Graph (CFG)
We address challenges in multimodal CoT integration through a reference mechanism, ensuring consistency between code and its execution path, thereby improving performance in program behavior prediction, error detection, and output generation.
- Score: 10.70881967278009
- License:
- Abstract: Predicting program behavior and reasoning about code execution remain significant challenges in software engineering, particularly for large language models (LLMs) designed for code analysis. While these models excel at understanding static syntax, they often struggle with dynamic reasoning tasks. We introduce VisualCoder, a simple yet effective approach that enhances code reasoning by integrating multimodal Chain-of-Thought (CoT) reasoning with a visual Control Flow Graph (CFG). By aligning code snippets with their corresponding CFGs, VisualCoder provides deeper insights into execution flows. We address challenges in multimodal CoT integration through a reference mechanism, ensuring consistency between code and its execution path, thereby improving performance in program behavior prediction, error detection, and output generation.
Related papers
- Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - CodeMind: A Framework to Challenge Large Language Models for Code Reasoning [1.4027589547318842]
We introduce CodeMind, a framework designed to gauge the code reasoning abilities of Large Language Models (LLMs)
CodeMind supports three code reasoning tasks: Independent Execution Reasoning (IER), Dependent Execution Reasoning (DER), and Specification Reasoning (SR)
arXiv Detail & Related papers (2024-02-15T02:24:46Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
This paper studies file-level code summarization, which can assist programmers in understanding and maintaining large source code projects.
We propose SparseCoder, an identifier-aware sparse transformer for effectively handling long code sequences.
arXiv Detail & Related papers (2024-01-26T09:23:27Z) - CompCodeVet: A Compiler-guided Validation and Enhancement Approach for
Code Dataset [12.58750209611099]
Even models with billions of parameters face challenges in tasks demanding multi-step reasoning.
CompCodeVet is a compiler-guided CoT approach to produce compilable code from non-compilable ones.
arXiv Detail & Related papers (2023-11-11T08:21:52Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
This paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT.
We show that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.
arXiv Detail & Related papers (2023-10-16T05:09:58Z) - AI Chain on Large Language Model for Unsupervised Control Flow Graph
Generation for Statically-Typed Partial Code [21.423928174875844]
Control Flow Graphs (CFGs) are essential for visualizing, understanding and analyzing program behavior.
We propose a novel approach that leverages the error-tolerant and understanding ability of pre-trained Large Language Models (LLMs) to generate CFGs.
arXiv Detail & Related papers (2023-06-01T14:52:59Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
Large language models (LLMs) pretrained on vast source code have achieved prominent progress in code intelligence.
CodeT5+ is a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of downstream code tasks.
We extensively evaluate CodeT5+ on over 20 code-related benchmarks in different settings, including zero-shot, finetuning, and instruction-tuning.
arXiv Detail & Related papers (2023-05-13T14:23:07Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
Most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures.
We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution.
We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension.
arXiv Detail & Related papers (2023-05-08T10:00:05Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
We propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval.
We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
arXiv Detail & Related papers (2022-03-15T08:25:08Z) - Learning to Extend Program Graphs to Work-in-Progress Code [31.235862838381966]
We extend the notion of program graphs to work-in-progress code by learning to predict edge relations between tokens.
We consider the tasks of code completion and localizing and repairing variable misuse in a work-in-process scenario.
We demonstrate that training relation-aware models with fine-tuned edges consistently leads to improved performance on both tasks.
arXiv Detail & Related papers (2021-05-28T18:12:22Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
We present GraphCodeBERT, a pre-trained model for programming language that considers the inherent structure of code.
We use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of "where-the-value-comes-from" between variables.
We evaluate our model on four tasks, including code search, clone detection, code translation, and code refinement.
arXiv Detail & Related papers (2020-09-17T15:25:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.