Investigating Execution-Aware Language Models for Code Optimization
- URL: http://arxiv.org/abs/2503.08228v1
- Date: Tue, 11 Mar 2025 09:46:07 GMT
- Title: Investigating Execution-Aware Language Models for Code Optimization
- Authors: Federico Di Menna, Luca Traini, Gabriele Bavota, Vittorio Cortellessa,
- Abstract summary: This study investigates how incorporating code execution information into language models affects their ability to optimize code.<n>Our results indicate that execution-aware models provide limited benefits compared to the standard CodeT5+ model in optimizing code.
- Score: 7.62248558265865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code optimization is the process of enhancing code efficiency, while preserving its intended functionality. This process often requires a deep understanding of the code execution behavior at run-time to identify and address inefficiencies effectively. Recent studies have shown that language models can play a significant role in automating code optimization. However, these models may have insufficient knowledge of how code execute at run-time. To address this limitation, researchers have developed strategies that integrate code execution information into language models. These strategies have shown promise, enhancing the effectiveness of language models in various software engineering tasks. However, despite the close relationship between code execution behavior and efficiency, the specific impact of these strategies on code optimization remains largely unexplored. This study investigates how incorporating code execution information into language models affects their ability to optimize code. Specifically, we apply three different training strategies to incorporate four code execution aspects -- line executions, line coverage, branch coverage, and variable states -- into CodeT5+, a well-known language model for code. Our results indicate that execution-aware models provide limited benefits compared to the standard CodeT5+ model in optimizing code.
Related papers
- VisualCoder: Guiding Large Language Models in Code Execution with Fine-grained Multimodal Chain-of-Thought Reasoning [10.70881967278009]
We introduce VisualCoder, a simple yet effective approach that enhances code reasoning by integrating multimodal Chain-of-Thought snippets (CoT) reasoning with a visual Control Flow Graph (CFG)<n>We address challenges in multimodal CoT integration through a reference mechanism, ensuring consistency between code and its execution path, thereby improving performance in program behavior prediction, error detection, and output generation.
arXiv Detail & Related papers (2024-10-30T19:07:01Z) - Rethinking Code Refinement: Learning to Judge Code Efficiency [60.04718679054704]
Large Language Models (LLMs) have demonstrated impressive capabilities in understanding and generating codes.
We propose a novel method based on the code language model that is trained to judge the efficiency between two different codes.
We validate our method on multiple programming languages with multiple refinement steps, demonstrating that the proposed method can effectively distinguish between more and less efficient versions of code.
arXiv Detail & Related papers (2024-10-29T06:17:37Z) - CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
We propose CodeDPO, a framework that integrates preference learning into code generation to improve two key code preference factors: code correctness and efficiency.
CodeDPO employs a novel dataset construction method, utilizing a self-generation-and-validation mechanism that simultaneously generates and evaluates code and test cases.
arXiv Detail & Related papers (2024-10-08T01:36:15Z) - ECCO: Can We Improve Model-Generated Code Efficiency Without Sacrificing Functional Correctness? [12.862825053595934]
ECCO is a benchmark for evaluating program efficiency via two paradigms: natural language (NL) based code generation and history-based code editing.
We find that adding execution information often helps maintain functional correctness, and NL feedback enhances more on efficiency.
arXiv Detail & Related papers (2024-07-19T05:47:40Z) - Can Large Language Models Write Parallel Code? [0.5317767988097261]
Large language models are increasingly becoming a popular tool for software development.
In this paper, we study the capabilities of state-of-the-art language models to generate parallel code.
arXiv Detail & Related papers (2024-01-23T08:25:12Z) - CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model [58.127534002232096]
This paper introduces CodeFuse-13B, an open-sourced pre-trained code LLM.
It is specifically designed for code-related tasks with both English and Chinese prompts.
CodeFuse achieves its effectiveness by utilizing a high quality pre-training dataset.
arXiv Detail & Related papers (2023-10-10T02:38:44Z) - A Static Evaluation of Code Completion by Large Language Models [65.18008807383816]
Execution-based benchmarks have been proposed to evaluate functional correctness of model-generated code on simple programming problems.
static analysis tools such as linters, which can detect errors without running the program, haven't been well explored for evaluating code generation models.
We propose a static evaluation framework to quantify static errors in Python code completions, by leveraging Abstract Syntax Trees.
arXiv Detail & Related papers (2023-06-05T19:23:34Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
Most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures.
We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution.
We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension.
arXiv Detail & Related papers (2023-05-08T10:00:05Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
We propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval.
We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
arXiv Detail & Related papers (2022-03-15T08:25:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.