論文の概要: TPP-Gaze: Modelling Gaze Dynamics in Space and Time with Neural Temporal Point Processes
- arxiv url: http://arxiv.org/abs/2410.23409v1
- Date: Wed, 30 Oct 2024 19:22:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:03:11.774457
- Title: TPP-Gaze: Modelling Gaze Dynamics in Space and Time with Neural Temporal Point Processes
- Title(参考訳): TPP-Gaze: 時間と空間における注視ダイナミクスをニューラルテンポラルポイントプロセスでモデル化する
- Authors: Alessandro D'Amelio, Giuseppe Cartella, Vittorio Cuculo, Manuele Lucchi, Marcella Cornia, Rita Cucchiara, Giuseppe Boccignone,
- Abstract要約: ニューラル・テンポラル・ポイント・プロセス(TPP)に基づく新規かつ原則化されたスキャンパスダイナミクスのアプローチであるTPP-Gazeを提案する。
提案手法は,最先端手法と比較して総合的に優れた性能を示す。
- 参考スコア(独自算出の注目度): 63.95928298690001
- License:
- Abstract: Attention guides our gaze to fixate the proper location of the scene and holds it in that location for the deserved amount of time given current processing demands, before shifting to the next one. As such, gaze deployment crucially is a temporal process. Existing computational models have made significant strides in predicting spatial aspects of observer's visual scanpaths (where to look), while often putting on the background the temporal facet of attention dynamics (when). In this paper we present TPP-Gaze, a novel and principled approach to model scanpath dynamics based on Neural Temporal Point Process (TPP), that jointly learns the temporal dynamics of fixations position and duration, integrating deep learning methodologies with point process theory. We conduct extensive experiments across five publicly available datasets. Our results show the overall superior performance of the proposed model compared to state-of-the-art approaches. Source code and trained models are publicly available at: https://github.com/phuselab/tppgaze.
- Abstract(参考訳): 注意は、シーンの適切な位置を固定し、現在の処理要求に応じて適切な時間その場所に保持し、次に移動する前に、我々の視線を導く。
このように、デプロイメントを目視することは、時間的プロセスである。
既存の計算モデルは、観測者の視線スキャンパスの空間的側面(どこを見るべきか)を予測し、背景に注意力学の時間的側面を配置する(その時)。
本稿では,ニューラル・テンポラル・ポイント・プロセス(TPP)に基づくスキャニングパスのダイナミックスをモデル化するための,新しい原理的アプローチであるTPP-Gazeについて述べる。
5つの公開データセットにわたる広範な実験を行います。
提案手法は,最先端手法と比較して総合的に優れた性能を示す。
ソースコードとトレーニングされたモデルは、https://github.com/phuselab/tppgaze.comで公開されている。
関連論文リスト
- Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
HMP(Human Motion Prediction)はその多種多様な応用により、人気のある研究トピックとして浮上している。
従来の手法は手作りの機能と機械学習技術に依存している。
HMPのためのインクリメンタル情報を用いた時空間分岐ネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T12:04:28Z) - Deep graph kernel point processes [17.74234892097879]
本稿では,グラフ上の離散的なイベントデータに対する新たなポイントプロセスモデルを提案する。
キーとなるアイデアは、グラフニューラルネットワーク(GNN)による影響カーネルを表現して、基盤となるグラフ構造をキャプチャすることだ。
ニューラルネットワークを用いた条件強度関数を直接モデル化することに焦点を当てた以前の研究と比較して、カーネルのプレゼンテーションでは、繰り返し発生する事象の影響パターンをより効果的に表現している。
論文 参考訳(メタデータ) (2023-06-20T06:15:19Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
本稿では,逐次時間間隔でサリエンシマップを出力する新たなサリエンシ予測モデルを提案する。
提案手法は,学習した時間マップを組み合わせることで,サリエンシ予測を局所的に調整する。
私たちのコードはGitHubで公開されます。
論文 参考訳(メタデータ) (2023-01-05T22:10:16Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
実世界のプロセスの相関は時間的であり、それらによって生成されたデータは空間的および時間的進化の両方を示す。
時系列モデルが数値予測の代替となる。
本研究では,分解時間予測モデルにより計算コストを低減し,精度を向上することを示した。
論文 参考訳(メタデータ) (2022-09-29T13:47:02Z) - Neural Point Process for Learning Spatiotemporal Event Dynamics [21.43984242938217]
本稿では,時間的点過程を統合するディープ・ダイナミクス・モデルを提案する。
提案手法は柔軟で効率的で,不規則にサンプリングされた事象を時間と空間で正確に予測することができる。
実世界のベンチマークでは、我々のモデルは最先端のベースラインよりも優れた性能を示している。
論文 参考訳(メタデータ) (2021-12-12T23:17:33Z) - From Static to Dynamic Node Embeddings [61.58641072424504]
本稿では,時間的予測に基づくアプリケーションにグラフストリームデータを活用するための汎用フレームワークを提案する。
提案フレームワークは,適切なグラフ時系列表現を学習するための新しい手法を含む。
トップ3の時間モデルは常に新しい$epsilon$-graphの時系列表現を利用するモデルであることが分かりました。
論文 参考訳(メタデータ) (2020-09-21T16:48:29Z) - CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations [72.4716073597902]
本研究では,動的あるいは動いた物体の標準点クラウド表現を学習する手法を提案する。
本稿では, 形状再構成, カメラポーズ推定, 連続時間列再構成, 対応推定など, 様々な応用における本手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-08-06T17:58:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。