There and Back Again: On the relation between noises, images, and their inversions in diffusion models
- URL: http://arxiv.org/abs/2410.23530v1
- Date: Thu, 31 Oct 2024 00:30:35 GMT
- Title: There and Back Again: On the relation between noises, images, and their inversions in diffusion models
- Authors: Łukasz Staniszewski, Łukasz Kuciński, Kamil Deja,
- Abstract summary: Diffusion Probabilistic Models (DDPMs) achieve state-of-the-art performance in synthesizing new images from random noise.
Recent DDPM-based editing techniques try to mitigate this issue by inverting images back to their approximated staring noise.
We study the relation between the initial Gaussian noise, the samples generated from it, and their corresponding latent encodings obtained through the inversion procedure.
- Score: 3.5707423185282665
- License:
- Abstract: Denoising Diffusion Probabilistic Models (DDPMs) achieve state-of-the-art performance in synthesizing new images from random noise, but they lack meaningful latent space that encodes data into features. Recent DDPM-based editing techniques try to mitigate this issue by inverting images back to their approximated staring noise. In this work, we study the relation between the initial Gaussian noise, the samples generated from it, and their corresponding latent encodings obtained through the inversion procedure. First, we interpret their spatial distance relations to show the inaccuracy of the DDIM inversion technique by localizing latent representations manifold between the initial noise and generated samples. Then, we demonstrate the peculiar relation between initial Gaussian noise and its corresponding generations during diffusion training, showing that the high-level features of generated images stabilize rapidly, keeping the spatial distance relationship between noises and generations consistent throughout the training.
Related papers
- Diffusion Priors for Variational Likelihood Estimation and Image Denoising [10.548018200066858]
We propose adaptive likelihood estimation and MAP inference during the reverse diffusion process to tackle real-world noise.
Experiments and analyses on diverse real-world datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-10-23T02:52:53Z) - NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation [86.7260950382448]
We propose a novel approach to correct noise for image validity, NoiseDiffusion.
NoiseDiffusion performs within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss.
arXiv Detail & Related papers (2024-03-13T12:32:25Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - PartDiff: Image Super-resolution with Partial Diffusion Models [3.8435187580887717]
Denoising diffusion probabilistic models (DDPMs) have achieved impressive performance on various image generation tasks.
DDPMs generate new data by iteratively denoising from random noise.
But diffusion-based generative models suffer from high computational costs due to the large number of denoising steps.
This paper proposes the Partial Diffusion Model (PartDiff), which diffuses the image to an intermediate latent state instead of pure random noise.
arXiv Detail & Related papers (2023-07-21T22:11:23Z) - SVNR: Spatially-variant Noise Removal with Denoising Diffusion [43.2405873681083]
We present a novel formulation of denoising diffusion that assumes a more realistic, spatially-variant noise model.
In experiments we demonstrate the advantages of our approach over a strong diffusion model baseline, as well as over a state-of-the-art single image denoising method.
arXiv Detail & Related papers (2023-06-28T09:32:00Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
This work presents a decomposed diffusion process via resolving the per-frame noise into a base noise that is shared among all frames and a residual noise that varies along the time axis.
Experiments on various datasets confirm that our approach, termed as VideoFusion, surpasses both GAN-based and diffusion-based alternatives in high-quality video generation.
arXiv Detail & Related papers (2023-03-15T02:16:39Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - Representing Noisy Image Without Denoising [91.73819173191076]
Fractional-order Moments in Radon space (FMR) is designed to derive robust representation directly from noisy images.
Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases.
arXiv Detail & Related papers (2023-01-18T10:13:29Z) - Image reconstruction in light-sheet microscopy: spatially varying
deconvolution and mixed noise [1.1545092788508224]
We study the problem of deconvolution for light-sheet microscopy.
The data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise.
numerical experiments performed on both simulated and real data show superior reconstruction results in comparison with other methods.
arXiv Detail & Related papers (2021-08-08T14:14:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.