SVNR: Spatially-variant Noise Removal with Denoising Diffusion
- URL: http://arxiv.org/abs/2306.16052v1
- Date: Wed, 28 Jun 2023 09:32:00 GMT
- Title: SVNR: Spatially-variant Noise Removal with Denoising Diffusion
- Authors: Naama Pearl, Yaron Brodsky, Dana Berman, Assaf Zomet, Alex Rav Acha,
Daniel Cohen-Or, Dani Lischinski
- Abstract summary: We present a novel formulation of denoising diffusion that assumes a more realistic, spatially-variant noise model.
In experiments we demonstrate the advantages of our approach over a strong diffusion model baseline, as well as over a state-of-the-art single image denoising method.
- Score: 43.2405873681083
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Denoising diffusion models have recently shown impressive results in
generative tasks. By learning powerful priors from huge collections of training
images, such models are able to gradually modify complete noise to a clean
natural image via a sequence of small denoising steps, seemingly making them
well-suited for single image denoising. However, effectively applying denoising
diffusion models to removal of realistic noise is more challenging than it may
seem, since their formulation is based on additive white Gaussian noise, unlike
noise in real-world images. In this work, we present SVNR, a novel formulation
of denoising diffusion that assumes a more realistic, spatially-variant noise
model. SVNR enables using the noisy input image as the starting point for the
denoising diffusion process, in addition to conditioning the process on it. To
this end, we adapt the diffusion process to allow each pixel to have its own
time embedding, and propose training and inference schemes that support
spatially-varying time maps. Our formulation also accounts for the correlation
that exists between the condition image and the samples along the modified
diffusion process. In our experiments we demonstrate the advantages of our
approach over a strong diffusion model baseline, as well as over a
state-of-the-art single image denoising method.
Related papers
- DiffuseReg: Denoising Diffusion Model for Obtaining Deformation Fields in Unsupervised Deformable Image Registration [4.14360329494344]
Deformable image registration aims to precisely align medical images from different modalities or times.
Traditional deep learning methods, while effective, often lack interpretability, real-time observability and adjustment capacity during registration inference.
We introduce DiffuseReg, an innovative diffusion-based method that denoises deformation fields instead of images for improved transparency.
arXiv Detail & Related papers (2024-10-07T17:41:35Z) - NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation [86.7260950382448]
We propose a novel approach to correct noise for image validity, NoiseDiffusion.
NoiseDiffusion performs within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss.
arXiv Detail & Related papers (2024-03-13T12:32:25Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Resfusion: Denoising Diffusion Probabilistic Models for Image Restoration Based on Prior Residual Noise [34.65659277870287]
Research on denoising diffusion models has expanded its application to the field of image restoration.
We propose Resfusion, a framework that incorporates the residual term into the diffusion forward process.
We show that Resfusion exhibits competitive performance on ISTD dataset, LOL dataset and Raindrop dataset with only five sampling steps.
arXiv Detail & Related papers (2023-11-25T02:09:38Z) - PartDiff: Image Super-resolution with Partial Diffusion Models [3.8435187580887717]
Denoising diffusion probabilistic models (DDPMs) have achieved impressive performance on various image generation tasks.
DDPMs generate new data by iteratively denoising from random noise.
But diffusion-based generative models suffer from high computational costs due to the large number of denoising steps.
This paper proposes the Partial Diffusion Model (PartDiff), which diffuses the image to an intermediate latent state instead of pure random noise.
arXiv Detail & Related papers (2023-07-21T22:11:23Z) - Stimulating Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling [56.506240377714754]
We present a novel strategy called the Diffusion Model for Image Denoising (DMID)
Our strategy includes an adaptive embedding method that embeds the noisy image into a pre-trained unconditional diffusion model.
Our DMID strategy achieves state-of-the-art performance on both distortion-based and perception-based metrics.
arXiv Detail & Related papers (2023-07-08T14:59:41Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - Real-World Denoising via Diffusion Model [14.722529440511446]
Real-world image denoising aims to recover clean images from noisy images captured in natural environments.
diffusion models have achieved very promising results in the field of image generation, outperforming previous generation models.
This paper proposes a novel general denoising diffusion model that can be used for real-world image denoising.
arXiv Detail & Related papers (2023-05-08T04:48:03Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.