There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models
- URL: http://arxiv.org/abs/2410.23530v2
- Date: Thu, 13 Mar 2025 01:33:51 GMT
- Title: There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models
- Authors: Łukasz Staniszewski, Łukasz Kuciński, Kamil Deja,
- Abstract summary: Inversion-based techniques reverse the denoising process and map images back to their approximated starting noise.<n>We show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image regions.<n>This leads to a low diversity of generated editions based on the DDIM inversion procedure and ill-defined latent-to-image mapping.
- Score: 3.5707423185282665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion Models achieve state-of-the-art performance in generating new samples but lack low-dimensional latent space that encodes the data into meaningful features. Inversion-based techniques try to solve this issue by reversing the denoising process and mapping images back to their approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial Gaussian noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image regions. Next, we explain the origin of this phenomenon, demonstrating that, during the first inversion steps, the noise prediction error is much more significant for the plain areas than for the rest of the image. Finally, we present the consequences of the divergence between latents and noises by showing that the space of image inversions is notably less manipulative than the original Gaussian noise. This leads to a low diversity of generated interpolations or editions based on the DDIM inversion procedure and ill-defined latent-to-image mapping. Code is available at https://github.com/luk-st/taba.
Related papers
- VIPaint: Image Inpainting with Pre-Trained Diffusion Models via Variational Inference [5.852077003870417]
We show that our VIPaint method significantly outperforms previous approaches in both the plausibility and diversity of imputations.
We show that our VIPaint method significantly outperforms previous approaches in both the plausibility and diversity of imputations.
arXiv Detail & Related papers (2024-11-28T05:35:36Z) - Diffusion Priors for Variational Likelihood Estimation and Image Denoising [10.548018200066858]
We propose adaptive likelihood estimation and MAP inference during the reverse diffusion process to tackle real-world noise.
Experiments and analyses on diverse real-world datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-10-23T02:52:53Z) - Beyond Image Prior: Embedding Noise Prior into Conditional Denoising Transformer [17.430622649002427]
Existing learning-based denoising methods typically train models to generalize the image prior from large-scale datasets.
We propose a new perspective on the denoising challenge by highlighting the distinct separation between noise and image priors.
We introduce a Locally Noise Prior Estimation algorithm, which accurately estimates the noise prior directly from a single raw noisy image.
arXiv Detail & Related papers (2024-07-12T08:43:11Z) - The Crystal Ball Hypothesis in diffusion models: Anticipating object positions from initial noise [92.53724347718173]
Diffusion models have achieved remarkable success in text-to-image generation tasks.
We identify specific regions within the initial noise image, termed trigger patches, that play a key role for object generation in the resulting images.
arXiv Detail & Related papers (2024-06-04T05:06:00Z) - NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation [86.7260950382448]
We propose a novel approach to correct noise for image validity, NoiseDiffusion.
NoiseDiffusion performs within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss.
arXiv Detail & Related papers (2024-03-13T12:32:25Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - PartDiff: Image Super-resolution with Partial Diffusion Models [3.8435187580887717]
Denoising diffusion probabilistic models (DDPMs) have achieved impressive performance on various image generation tasks.
DDPMs generate new data by iteratively denoising from random noise.
But diffusion-based generative models suffer from high computational costs due to the large number of denoising steps.
This paper proposes the Partial Diffusion Model (PartDiff), which diffuses the image to an intermediate latent state instead of pure random noise.
arXiv Detail & Related papers (2023-07-21T22:11:23Z) - SVNR: Spatially-variant Noise Removal with Denoising Diffusion [43.2405873681083]
We present a novel formulation of denoising diffusion that assumes a more realistic, spatially-variant noise model.
In experiments we demonstrate the advantages of our approach over a strong diffusion model baseline, as well as over a state-of-the-art single image denoising method.
arXiv Detail & Related papers (2023-06-28T09:32:00Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
This work presents a decomposed diffusion process via resolving the per-frame noise into a base noise that is shared among all frames and a residual noise that varies along the time axis.
Experiments on various datasets confirm that our approach, termed as VideoFusion, surpasses both GAN-based and diffusion-based alternatives in high-quality video generation.
arXiv Detail & Related papers (2023-03-15T02:16:39Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - Representing Noisy Image Without Denoising [91.73819173191076]
Fractional-order Moments in Radon space (FMR) is designed to derive robust representation directly from noisy images.
Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases.
arXiv Detail & Related papers (2023-01-18T10:13:29Z) - EDICT: Exact Diffusion Inversion via Coupled Transformations [13.996171129586731]
Finding an initial noise vector that produces an input image when fed into the diffusion process (known as inversion) is an important problem.
We propose Exact Diffusion Inversion via Coupled Transformations (EDICT), an inversion method that draws inspiration from affine coupling layers.
EDICT enables mathematically exact inversion of real and model-generated images by maintaining two coupled noise vectors.
arXiv Detail & Related papers (2022-11-22T18:02:49Z) - Image reconstruction in light-sheet microscopy: spatially varying
deconvolution and mixed noise [1.1545092788508224]
We study the problem of deconvolution for light-sheet microscopy.
The data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise.
numerical experiments performed on both simulated and real data show superior reconstruction results in comparison with other methods.
arXiv Detail & Related papers (2021-08-08T14:14:35Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.