EMGBench: Benchmarking Out-of-Distribution Generalization and Adaptation for Electromyography
- URL: http://arxiv.org/abs/2410.23625v2
- Date: Mon, 04 Nov 2024 17:27:53 GMT
- Title: EMGBench: Benchmarking Out-of-Distribution Generalization and Adaptation for Electromyography
- Authors: Jehan Yang, Maxwell Soh, Vivianna Lieu, Douglas J Weber, Zackory Erickson,
- Abstract summary: This paper introduces the first generalization and adaptation benchmark using machine learning for evaluating out-of-distribution performance of electromyography (EMG) classification algorithms.
By predicting the user's intended gesture using EMG signals, we can create a wearable solution to control assistive technologies.
- Score: 3.5217105746525803
- License:
- Abstract: This paper introduces the first generalization and adaptation benchmark using machine learning for evaluating out-of-distribution performance of electromyography (EMG) classification algorithms. The ability of an EMG classifier to handle inputs drawn from a different distribution than the training distribution is critical for real-world deployment as a control interface. By predicting the user's intended gesture using EMG signals, we can create a wearable solution to control assistive technologies, such as computers, prosthetics, and mobile manipulator robots. This new out-of-distribution benchmark consists of two major tasks that have utility for building robust and adaptable control interfaces: 1) intersubject classification and 2) adaptation using train-test splits for time-series. This benchmark spans nine datasets--the largest collection of EMG datasets in a benchmark. Among these, a new dataset is introduced, featuring a novel, easy-to-wear high-density EMG wearable for data collection. The lack of open-source benchmarks has made comparing accuracy results between papers challenging for the EMG research community. This new benchmark provides researchers with a valuable resource for analyzing practical measures of out-of-distribution performance for EMG datasets. Our code and data from our new dataset can be found at emgbench.github.io.
Related papers
- Language-aware Multiple Datasets Detection Pretraining for DETRs [4.939595148195813]
We propose a framework for utilizing Multiple datasets to pretrain DETR-like detectors, termed METR.
It converts the typical multi-classification in object detection into binary classification by introducing a pre-trained language model.
We show METR achieves extraordinary results on either multi-task joint training or the pretrain & finetune paradigm.
arXiv Detail & Related papers (2023-04-07T10:34:04Z) - Machine Learning Capability: A standardized metric using case difficulty
with applications to individualized deployment of supervised machine learning [2.2060666847121864]
Model evaluation is a critical component in supervised machine learning classification analyses.
Items Response Theory (IRT) and Computer Adaptive Testing (CAT) with machine learning can benchmark datasets independent of the end-classification results.
arXiv Detail & Related papers (2023-02-09T00:38:42Z) - EGG-GAE: scalable graph neural networks for tabular data imputation [8.775728170359024]
We propose a novel EdGe Generation Graph AutoEncoder (EGG-GAE) for missing data imputation.
EGG-GAE works on randomly sampled mini-batches of the input data, and it automatically infers the best connectivity across the mini-batch for each architecture layer.
arXiv Detail & Related papers (2022-10-19T10:26:17Z) - Vector-Based Data Improves Left-Right Eye-Tracking Classifier
Performance After a Covariate Distributional Shift [0.0]
We propose a fine-grain data approach for EEG-ET data collection in order to create more robust benchmarking.
We train machine learning models utilizing both coarse-grain and fine-grain data and compare their accuracies when tested on data of similar/different distributional patterns.
Results showed that models trained on fine-grain, vector-based data were less susceptible to distributional shifts than models trained on coarse-grain, binary-classified data.
arXiv Detail & Related papers (2022-07-31T16:27:50Z) - AnoShift: A Distribution Shift Benchmark for Unsupervised Anomaly
Detection [7.829710051617368]
We introduce an unsupervised anomaly detection benchmark with data that shifts over time, built over Kyoto-2006+, a traffic dataset for network intrusion detection.
We first highlight the non-stationary nature of the data, using a basic per-feature analysis, t-SNE, and an Optimal Transport approach for measuring the overall distribution distances between years.
We validate the performance degradation over time with diverse models, ranging from classical approaches to deep learning.
arXiv Detail & Related papers (2022-06-30T17:59:22Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Open-Set Recognition: A Good Closed-Set Classifier is All You Need [146.6814176602689]
We show that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes.
We use this correlation to boost the performance of the cross-entropy OSR 'baseline' by improving its closed-set accuracy.
We also construct new benchmarks which better respect the task of detecting semantic novelty.
arXiv Detail & Related papers (2021-10-12T17:58:59Z) - Score-based Generative Modeling in Latent Space [93.8985523558869]
Score-based generative models (SGMs) have recently demonstrated impressive results in terms of both sample quality and distribution coverage.
Here, we propose the Latent Score-based Generative Model (LSGM), a novel approach that trains SGMs in a latent space.
Moving from data to latent space allows us to train more expressive generative models, apply SGMs to non-continuous data, and learn smoother SGMs in a smaller space.
arXiv Detail & Related papers (2021-06-10T17:26:35Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
We propose a novel augmentation method with language models trained on the linearized labeled sentences.
Our method is applicable to both supervised and semi-supervised settings.
arXiv Detail & Related papers (2020-11-03T07:49:15Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
We develop a methodology for assessing the robustness of models to subpopulation shift.
We leverage the class structure underlying existing datasets to control the data subpopulations that comprise the training and test distributions.
Applying this methodology to the ImageNet dataset, we create a suite of subpopulation shift benchmarks of varying granularity.
arXiv Detail & Related papers (2020-08-11T17:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.