Pseudo-Conversation Injection for LLM Goal Hijacking
- URL: http://arxiv.org/abs/2410.23678v1
- Date: Thu, 31 Oct 2024 06:58:34 GMT
- Title: Pseudo-Conversation Injection for LLM Goal Hijacking
- Authors: Zheng Chen, Buhui Yao,
- Abstract summary: In goal hijacking, an attacker typically appends a carefully crafted malicious suffix to the user's prompt.
We introduce a novel goal hijacking attack method called Pseudo-Conversation Injection.
We propose three Pseudo-Conversation construction strategies: Targeted Pseudo-Conversation, Universal Pseudo-Conversation, and Robust Pseudo-Conversation.
- Score: 3.574664325523221
- License:
- Abstract: Goal hijacking is a type of adversarial attack on Large Language Models (LLMs) where the objective is to manipulate the model into producing a specific, predetermined output, regardless of the user's original input. In goal hijacking, an attacker typically appends a carefully crafted malicious suffix to the user's prompt, which coerces the model into ignoring the user's original input and generating the target response. In this paper, we introduce a novel goal hijacking attack method called Pseudo-Conversation Injection, which leverages the weaknesses of LLMs in role identification within conversation contexts. Specifically, we construct the suffix by fabricating responses from the LLM to the user's initial prompt, followed by a prompt for a malicious new task. This leads the model to perceive the initial prompt and fabricated response as a completed conversation, thereby executing the new, falsified prompt. Following this approach, we propose three Pseudo-Conversation construction strategies: Targeted Pseudo-Conversation, Universal Pseudo-Conversation, and Robust Pseudo-Conversation. These strategies are designed to achieve effective goal hijacking across various scenarios. Our experiments, conducted on two mainstream LLM platforms including ChatGPT and Qwen, demonstrate that our proposed method significantly outperforms existing approaches in terms of attack effectiveness.
Related papers
- The Dark Side of Human Feedback: Poisoning Large Language Models via User Inputs [8.449922248196705]
We present a subtle yet effective poisoning attack via user-supplied prompts to penetrate alignment training protections.
Our attack, even without explicit knowledge about the target LLMs in the black-box setting, subtly alters the reward feedback mechanism.
By injecting 1% of these specially crafted prompts into the data, through malicious users, we demonstrate a toxicity score up to two times higher when a specific trigger word is used.
arXiv Detail & Related papers (2024-09-01T17:40:04Z) - Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
This research explores converting a nonsensical suffix attack into a sensible prompt via a situation-driven contextual re-writing.
We combine an independent, meaningful adversarial insertion and situations derived from movies to check if this can trick an LLM.
Our approach demonstrates that a successful situation-driven attack can be executed on both open-source and proprietary LLMs.
arXiv Detail & Related papers (2024-07-19T19:47:26Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.
We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.
We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - Semantic-guided Prompt Organization for Universal Goal Hijacking against LLMs [30.56428628397079]
We propose a universal goal hijacking method called POUGH that incorporates semantic-guided prompt processing strategies.
The method starts with a sampling strategy to select representative prompts from a candidate pool, followed by a ranking strategy that prioritizes the prompts.
Experiments conducted on four popular Large Language Models and ten types of target responses verified the effectiveness of our method.
arXiv Detail & Related papers (2024-05-23T05:31:41Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - Hijacking Large Language Models via Adversarial In-Context Learning [8.15194326639149]
In-context learning (ICL) has emerged as a powerful paradigm leveraging LLMs for specific downstream tasks.
Existing attacks are either easy to detect, rely on external models, or lack specificity towards ICL.
This work introduces a novel transferable attack against ICL to address these issues.
arXiv Detail & Related papers (2023-11-16T15:01:48Z) - An LLM can Fool Itself: A Prompt-Based Adversarial Attack [26.460067102821476]
This paper proposes an efficient tool to audit the LLM's adversarial robustness via a prompt-based adversarial attack (PromptAttack)
PromptAttack converts adversarial textual attacks into an attack prompt that can cause the victim LLM to output the adversarial sample to fool itself.
Comprehensive empirical results using Llama2 and GPT-3.5 validate that PromptAttack consistently yields a much higher attack success rate compared to AdvGLUE and AdvGLUE++.
arXiv Detail & Related papers (2023-10-20T08:16:46Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z) - Generalizable Black-Box Adversarial Attack with Meta Learning [54.196613395045595]
In black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful perturbation based on query feedback under a query budget.
We propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability.
The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance.
arXiv Detail & Related papers (2023-01-01T07:24:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.